Nothing
#' Run GSEA to compare a gene list(s) to per cell or
#' per cluster expression data
#' @description Use fgsea algorithm to compute normalized enrichment
#' scores and pvalues for gene
#' set ovelap
#' @param expr_mat single-cell expression matrix or Seurat object
#' @param query_genes A vector or named list of vectors of genesets of interest
#' to compare via GSEA. If supplying a named list, then the gene set names
#' will appear in the output.
#' @param cluster_ids vector of cell cluster assignments, supplied as a
#' vector with order that
#' matches columns in `expr_mat`. Not required if running per cell.
#' @param n_perm Number of permutation for fgsea function. Defaults to 1000.
#' @param per_cell if true run per cell, otherwise per cluster.
#' @param scale convert expr_mat into zscores prior to running GSEA?,
#' default = FALSE
#' @param no_warnings suppress warnings from gsea ties
#' @return dataframe of gsea scores (pval, NES), with clusters as rownames
#' @examples
#' run_gsea(
#' expr_mat = pbmc_matrix_small,
#' query_genes = pbmc_vargenes[1:100],
#' n_perm = 10,
#' cluster_ids = pbmc_meta$classified,
#' no_warnings = TRUE
#' )
#' @export
run_gsea <- function(expr_mat,
query_genes,
cluster_ids = NULL,
n_perm = 1000,
per_cell = FALSE,
scale = FALSE,
no_warnings = TRUE) {
if (!is.list(query_genes)) {
geneset_list <- list("query_genes" = query_genes)
} else {
geneset_list <- query_genes
}
if (!per_cell & (ncol(expr_mat) != length(cluster_ids))) {
stop("cluster_ids do not match number of cells (columns) ",
"in expr_mat",
call. = FALSE
)
}
if (n_perm > 1e4 & per_cell) {
warning(
"run_gsea() take a long time if running many ",
"permutations and running per cell"
)
}
if (scale) {
expr_mat <- t(scale(t(as.matrix(expr_mat))))
}
if (!per_cell) {
avg_mat <- average_clusters(expr_mat,
metadata = cluster_ids
)
} else {
avg_mat <- expr_mat
}
res <- list()
for (i in seq_along(colnames(avg_mat))) {
if (!(no_warnings)) {
gsea_res <- fgsea::fgsea(
geneset_list,
avg_mat[, i],
minSize = 1,
maxSize = max(vapply(geneset_list,
length,
FUN.VALUE = numeric(1)
)),
nproc = 1,
nperm = n_perm
)
} else {
suppressWarnings(
gsea_res <- fgsea::fgsea(
geneset_list,
avg_mat[, i],
minSize = 1,
maxSize = max(vapply(geneset_list,
length,
FUN.VALUE = numeric(1)
)),
nproc = 1,
nperm = n_perm
)
)
}
res[[i]] <- gsea_res[, c("pathway", "pval", "NES")]
}
gsea_res <- dplyr::bind_rows(res)
gsea_res <-
as.data.frame(dplyr::mutate(gsea_res, cell = colnames(avg_mat)))
if (tibble::has_rownames(gsea_res)) {
gsea_res <- tibble::remove_rownames(gsea_res)
}
gsea_res <- tibble::column_to_rownames(gsea_res, "cell")
gsea_res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.