Description Usage Arguments Value Examples
Main function to compare scRNA-seq data to gene lists.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | clustify_lists(input, ...)
## Default S3 method:
clustify_lists(
input,
marker,
marker_inmatrix = TRUE,
metadata = NULL,
cluster_col = NULL,
if_log = TRUE,
per_cell = FALSE,
topn = 800,
cut = 0,
genome_n = 30000,
metric = "hyper",
output_high = TRUE,
lookuptable = NULL,
obj_out = TRUE,
seurat_out = TRUE,
rename_prefix = NULL,
threshold = 0,
low_threshold_cell = 0,
...
)
## S3 method for class 'seurat'
clustify_lists(
input,
metadata = NULL,
cluster_col = NULL,
if_log = TRUE,
per_cell = FALSE,
topn = 800,
cut = 0,
marker,
marker_inmatrix = TRUE,
genome_n = 30000,
metric = "hyper",
output_high = TRUE,
dr = "umap",
seurat_out = TRUE,
obj_out = TRUE,
threshold = 0,
rename_prefix = NULL,
...
)
## S3 method for class 'Seurat'
clustify_lists(
input,
metadata = NULL,
cluster_col = NULL,
if_log = TRUE,
per_cell = FALSE,
topn = 800,
cut = 0,
marker,
marker_inmatrix = TRUE,
genome_n = 30000,
metric = "hyper",
output_high = TRUE,
dr = "umap",
seurat_out = TRUE,
obj_out = TRUE,
threshold = 0,
rename_prefix = NULL,
...
)
## S3 method for class 'SingleCellExperiment'
clustify_lists(
input,
metadata = NULL,
cluster_col = NULL,
if_log = TRUE,
per_cell = FALSE,
topn = 800,
cut = 0,
marker,
marker_inmatrix = TRUE,
genome_n = 30000,
metric = "hyper",
output_high = TRUE,
dr = "umap",
seurat_out = TRUE,
obj_out = TRUE,
threshold = 0,
rename_prefix = NULL,
...
)
|
input |
single-cell expression matrix or Seurat object |
... |
passed to matrixize_markers |
marker |
matrix or dataframe of candidate genes for each cluster |
marker_inmatrix |
whether markers genes are already in preprocessed matrix form |
metadata |
cell cluster assignments,
supplied as a vector or data.frame.
If data.frame is supplied then |
cluster_col |
column in metadata with cluster number |
if_log |
input data is natural log, averaging will be done on unlogged data |
per_cell |
compare per cell or per cluster |
topn |
number of top expressing genes to keep from input matrix |
cut |
expression cut off from input matrix |
genome_n |
number of genes in the genome |
metric |
adjusted p-value for hypergeometric test, or jaccard index |
output_high |
if true (by default to fit with rest of package), -log10 transform p-value |
lookuptable |
if not supplied, will look in built-in table for object parsing |
obj_out |
whether to output object instead of cor matrix |
seurat_out |
output cor matrix or called seurat object (deprecated, use obj_out instead) |
rename_prefix |
prefix to add to type and r column names |
threshold |
identity calling minimum correlation score threshold, only used when obj_out = T |
low_threshold_cell |
option to remove clusters with too few cells |
dr |
stored dimension reduction |
matrix of numeric values, clusters from input as row names, cell types from marker_mat as column names
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # Annotate a matrix and metadata
clustify_lists(
input = pbmc_matrix_small,
marker = cbmc_m,
metadata = pbmc_meta,
cluster_col = "classified",
verbose = TRUE
)
# Annotate using a different method
clustify_lists(
input = pbmc_matrix_small,
marker = cbmc_m,
metadata = pbmc_meta,
cluster_col = "classified",
verbose = TRUE,
metric = "jaccard"
)
|
CD4 T CD8 T Memory CD4 T CD14+ Mono Naive CD4 T
Naive CD4 T 0.06713589 0.06713589 0 3.609737 0
Memory CD4 T 0.06713589 0.00000000 0 3.609737 0
CD14+ Mono 0.00000000 0.00000000 0 3.609737 0
B 0.00000000 0.00000000 0 3.609737 0
CD8 T 0.06713589 0.00000000 0 1.600060 0
FCGR3A+ Mono 0.00000000 0.00000000 0 3.609737 0
NK 0.00000000 0.06713589 0 3.609737 0
DC 0.00000000 0.00000000 0 3.609737 0
Platelet 0.12621349 0.00000000 0 3.523004 0
NK B CD16+ Mono CD34+ Eryth Mk DC
Naive CD4 T 3.60973732 0.0000000 0.00000000 0 0 0.000000 0.0000000
Memory CD4 T 3.60973732 0.0000000 0.00000000 0 0 0.000000 0.0000000
CD14+ Mono 1.60005988 0.0000000 0.00000000 0 0 0.000000 0.0000000
B 1.60005988 1.6000599 0.00000000 0 0 0.000000 0.0000000
CD8 T 3.60973732 0.0000000 0.00000000 0 0 0.000000 0.0000000
FCGR3A+ Mono 0.02934733 0.0000000 0.02934733 0 0 0.000000 0.0000000
NK 3.60973732 0.0000000 0.00000000 0 0 0.000000 0.0000000
DC 1.60005988 0.1085286 0.00000000 0 0 0.000000 0.1085286
Platelet 1.58060198 1.5806020 0.00000000 0 0 3.523004 0.0000000
pDCs
Naive CD4 T 0.00000
Memory CD4 T 0.00000
CD14+ Mono 0.00000
B 0.00000
CD8 T 0.00000
FCGR3A+ Mono 0.00000
NK 0.00000
DC 1.60006
Platelet 0.00000
CD4 T CD8 T Memory CD4 T CD14+ Mono Naive CD4 T
Naive CD4 T 0.001246883 0.001246883 0 0.003750000 0
Memory CD4 T 0.001246883 0.000000000 0 0.003750000 0
CD14+ Mono 0.000000000 0.000000000 0 0.003750000 0
B 0.000000000 0.000000000 0 0.003750000 0
CD8 T 0.001246883 0.000000000 0 0.002496879 0
FCGR3A+ Mono 0.000000000 0.000000000 0 0.003750000 0
NK 0.000000000 0.001246883 0 0.003750000 0
DC 0.000000000 0.000000000 0 0.003750000 0
Platelet 0.001166861 0.000000000 0 0.003508772 0
NK B CD16+ Mono CD34+ Eryth Mk
Naive CD4 T 0.003750000 0.000000000 0.000000000 0 0 0.000000000
Memory CD4 T 0.003750000 0.000000000 0.000000000 0 0 0.000000000
CD14+ Mono 0.002496879 0.000000000 0.000000000 0 0 0.000000000
B 0.002496879 0.002496879 0.000000000 0 0 0.000000000
CD8 T 0.003750000 0.000000000 0.000000000 0 0 0.000000000
FCGR3A+ Mono 0.001246883 0.000000000 0.001246883 0 0 0.000000000
NK 0.003750000 0.000000000 0.000000000 0 0 0.000000000
DC 0.002496879 0.001246883 0.000000000 0 0 0.000000000
Platelet 0.002336449 0.002336449 0.000000000 0 0 0.003508772
DC pDCs
Naive CD4 T 0.000000000 0.000000000
Memory CD4 T 0.000000000 0.000000000
CD14+ Mono 0.000000000 0.000000000
B 0.000000000 0.000000000
CD8 T 0.000000000 0.000000000
FCGR3A+ Mono 0.000000000 0.000000000
NK 0.000000000 0.000000000
DC 0.001246883 0.002496879
Platelet 0.000000000 0.000000000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.