Nothing
#' @title Differential circRNA expression analysis adapted from DESeq2
#'
#' @description The helper functions getDeseqRes() identifies
#' differentially expressed circRNAs. The latter uses respectively the R
#' Bioconductor packages DESeq2 which implements a beta-binomial model to
#' model changes in circRNA expression.
#'
#' @param backSplicedJunctions A data frame containing the back-spliced junction
#' coordinates and counts in each analyzed sample.
#' See \code{\link{getBackSplicedJunctions}} and \code{\link{mergeBSJunctions}}
#' (to group circRNA detected by multiple detection tools) on how to generated
#' this data frame.
#'
#' @param condition A string specifying which conditions to compare. Only 2
#' conditions at the time can be analyzed. Separate the 2 conditions with a
#' dash, e.g. A-B. Use the same name used in column condition in experiment.txt.
#' log2FC calculation is perfomed by comparing the condition positioned
#' forward against the condition positioned backward in the alphabet.
#' E.g. if there are 2 conditions A and B then a negative log2FC means that
#' in condition B there is a downregulation of the corresponding circRNA.
#' If a positive log2FC is found means that there is an upregulation in
#' condition B of that circRNA.
#'
#' @param pAdjustMethod A character string stating the method used to adjust
#' p-values for multiple testing. See \code{\link[stats]{p.adjust}}.
#' Deafult value is "BH".
#'
#' @param ... Arguments to be passed to the DESeq function used internally from
#' DESeq2 package. If nothing is specified the default
#' values of the function \code{\link[DESeq2]{DESeq}} are used.
#'
#' @param pathToExperiment A string containing the path to the experiment.txt
#' file. The file experiment.txt contains the experiment design information.
#' It must have at least 3 columns with headers:
#' \describe{
#' \item{label:}{(1st column) - unique names of the samples (short but informative).}
#' \item{fileName:}{(2nd column) - name of the input files - e.g. circRNAs_X.txt, where
#' x can be can be 001, 002 etc.}
#' \item{group:}{ (3rd column) - biological conditions - e.g. A or B; healthy or diseased
#' if you have only 2 conditions.}
#' }
#'
#' By default pathToExperiment is set to NULL and the file it is searched in
#' the working directory. If experiment.txt is located in a different directory
#' then the path needs to be specified.
#'
#' @return A data frame.
#'
#' @examples
#' # Load a data frame containing detected back-spliced junctions
#' data("mergedBSJunctions")
#'
#' pathToExperiment <- system.file("extdata", "experiment.txt",
#' package ="circRNAprofiler")
#'
#' # Filter circRNAs
#' filteredCirc <- filterCirc(
#' mergedBSJunctions,
#' allSamples = FALSE,
#' min = 5,
#' pathToExperiment)
#'
#' # Find differentially expressed circRNAs
#' deseqResBvsA <- getDeseqRes(
#' filteredCirc,
#' condition = "A-B",
#' pAdjustMethod = "BH",
#' pathToExperiment)
#'
#' @import dplyr
#' @import DESeq2
#' @importFrom utils read.table
#' @importFrom rlang .data
#'@export
getDeseqRes <-
function(backSplicedJunctions,
condition,
pAdjustMethod = "BH",
pathToExperiment = NULL,
...) {
# Read experiment.txt
experiment <- .readExperiment(pathToExperiment)
if (nrow(experiment)) {
cond <- strsplit(condition, "-")[[1]]
experiment <-
experiment[experiment$condition %in% cond,]
experiment$condition <-
as.factor(experiment$condition)
# Analysis with DESeq2
dds <-
DESeq2::DESeqDataSetFromMatrix(
countData = backSplicedJunctions[, experiment$label],
colData =
experiment[,-which(names(experiment) %in% "fileName")],
design = ~ condition
)
# Differential expression analysis - standard analysis
dds <- DESeq2::DESeq(dds, ...)
statistics <- DESeq2::results(dds, pAdjustMethod = pAdjustMethod)
# Get deseqRes data frame
deseqRes <- .getDeseqResDF(backSplicedJunctions,
statistics,
dds)
} else{
deseqRes <- data.frame()
cat("experiment.txt not found in wd (or empty). Differential expression analysis can
not be run. Type ?getDeseqRes and see pathToExperiment param.\n")
}
return(deseqRes)
}
# get deseqRes data frame
.getDeseqResDF <-
function(backSplicedJunctions,
statistics, dds) {
deseqRes <-
dplyr::bind_cols(
data.frame(
backSplicedJunctions$id,
backSplicedJunctions$gene,
statistics,
counts(dds, norm = TRUE)
)
) %>%
dplyr::select(-c(.data$baseMean, .data$lfcSE, .data$stat)) %>%
dplyr::rename(
log2FC = .data$log2FoldChange,
gene = .data$backSplicedJunctions.gene,
id = .data$backSplicedJunctions.id
) %>%
dplyr::mutate(id = as.character(.data$id),
gene = as.character(.data$gene))
return(deseqRes)
}
# If the function you are looking for is not here check supportFunction.R
# Functions in supportFunction.R are used by multiple functions.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.