Nothing
#' Get gene correlation for multiple dimensions.
#' @usage
#' getCor_ExpCNAMet(ListMatrix, dimension)
#'
#' @param ListMatrix is a List of numeric matrices
#' @param dimension Exp,CNA, Met , miRNA , RPPA
#'
#' @return correlation matrix
#' @examples
#' readRDS(paste(path.package("canceR"),"/extdata/rdata/Circos.rds", sep=""))
#' \dontrun{
#' getListProfData()
#' getCor_ExpCNAMet(myGlobalEnv$ListProfData$Expression, dimension="mRNA")
#' head(myGlobalEnv$Cor_Exp)
#' }
#' @import plyr
#'
getCor_ExpCNAMet <- function(ListMatrix, dimension){
#library(plyr)
##Merge data frame by rownames keeping the order of the first one
MergeRowNames <- function(x,n){
keeping.order <- function(data, fn, ...) {
col <- ".sortColumn"
data[,col] <- 1:nrow(data)
out <- fn(data, ...)
if (!col %in% colnames(out)) stop("Ordering column not preserved by function")
out <- out[order(out[,col]),]
out[,col] <- NULL
out
}
rownames(x) = make.names(x[,1], unique=TRUE)
## ordering genes in MutData as in GeneList
df_GeneList <- as.data.frame(rep(t(myGlobalEnv$GeneList), n))
#df_GeneList <- as.data.frame(myGlobalEnv$GeneList)
rownames(df_GeneList) <- make.names(df_GeneList[,1], unique =TRUE)
df_merge <- keeping.order(df_GeneList, merge, y=x, by = "row.names")
x <- df_merge[,c(-1,-2)]
return(x)
}
#
# if(exists("Cor_Exp", envir = myGlobalEnv)){
# rm(Cor_Exp, envir=myGlobalEnv)
#
# }
# if(exists("Cor_CNA", envir = myGlobalEnv)){
# rm(Cor_CNA, envir=myGlobalEnv)
#
# }
# if(exists("Cor_Met", envir = myGlobalEnv)){
# rm(Cor_Met, envir=myGlobalEnv)
#
# }
# if(exists("Cor_RPPA", envir = myGlobalEnv)){
# rm("Cor_RPPA", envir=myGlobalEnv)
#
# }
#
## Rotate the cube of Matrices with 90°
## get the same column of a list of matrices
getColumn <- function(x, colNum, len = nrow(x)){
y <- x[,colNum]
length(y) <- len
y
}
## get Matrices with each same column of all matrices
getMatrices <- function(colNums, dataList = x){
# the number of rows required
n <- max(sapply(dataList, nrow))
lapply(colNums, function(x, dat, n) { # iterate along requested columns
do.call(cbind, lapply(dat, getColumn,x, len=n)) # iterate along input data list
}, dataList, n)
}
## Define Lists
#Lchecked_GenProf <- length(myGlobalEnv$curselectGenProfs)
#ListProfData <- vector("list", Lchecked_GenProf)
#ListProfData$Expression <- myGlobalEnv$ListProfData$Expression
#myGlobalEnv$Cor_Met <- vector("list", 2)
## Rotate the list of Matrices by 90°
ListMatrix90 <- getMatrices(c(1:ncol(ListMatrix[[1]])),dataList=ListMatrix)
## Replace NA by 0
ListMatrix90 <- lapply(ListMatrix90, function(x) {x[is.na(x)] <- 0; x })
if(dimension == "CNA"){
# Ordering value
ListMatrix90 <- lapply(ListMatrix90,function(x)apply(x, 2, function(x) x[order(x)]))
}
## Convet the list of matrices to Array
#ArrayMatrix90 <- array(unlist( ListMatrix90), dim = c(nrow( ListMatrix90[[1]]), ncol( ListMatrix90[[1]]), length( ListMatrix90)))
#dimnames(ArrayMatrix90) <- list(1: dim(ArrayMatrix90)[1],names(ListProfData$Expression),colnames(ListProfData$Expression[[1]]) )
#cor.balance(t(ListMatrix90[[1]][1:136,]),m=1,G=4)
#cor(ListMatrix90[[1]], method="spearman" , use= "na")
Cor_ListMatrix <- lapply(ListMatrix90,function(x) cor(x,use="na", method="spearman"))
#lapply(Cor_ListProfData$Expression, function(x) x[abs(x)>0.8])
## convert the list of correlation matrices to Array
Cor_ArrayMatrix <- array(unlist( Cor_ListMatrix), dim = c(nrow(Cor_ListMatrix[[1]]), ncol(Cor_ListMatrix[[1]]), length(Cor_ListMatrix)))
dimnames(Cor_ArrayMatrix) <- list(names(ListMatrix), names(ListMatrix), colnames(ListMatrix[[1]]))
#################
#aaply(Cor_ArrayMatrix, c(3,1), function(x) x[myGlobalEnv$GeneList,,drop=FALSE])
#ProfData[,(as.factor(myGlobalEnv$GeneList))][1,1:7]
#ProfData[,(as.factor(myGlobalEnv$GeneList))][1,1:7]
################
#DF1_CorMatrix <- adply(Cor_ArrayMatrix,1:2)
## Convert array to df by 3,1 dimensions
Cor_DfMatrix <- plyr::adply(Cor_ArrayMatrix,c(3,1))
Cor_DfMatrix[is.na(Cor_DfMatrix)]<-0
## keeping the order of geneList
Cor_DfMatrix <-MergeRowNames(Cor_DfMatrix, length(myGlobalEnv$checked_Studies))
if(dimension == "Exp"){
myGlobalEnv$Cor_Exp <- Cor_DfMatrix
} else if(dimension == "MetHM450") {
myGlobalEnv$Cor_Met$HM450 <- Cor_DfMatrix
} else if (dimension=="MetHM27"){
myGlobalEnv$Cor_Met$HM27 <- Cor_DfMatrix
} else if(dimension == "CNA") {
myGlobalEnv$Cor_CNA <- Cor_DfMatrix
} else if(dimension == "RPPA") {
myGlobalEnv$Cor_RPPA <- Cor_DfMatrix
} else if(dimension == "miRNA"){
myGlobalEnv$Cor_miRNA <- Cor_DfMatrix
}
# ## aggregate only correlation bigger that threshol by rowname
# temp1 <-aggregate(temp[,c(-1,-2)], list(temp[,2]), function(x) sum(abs(x)>.2))
# rownames(temp1)<-temp1[,1]
# temp1 <- temp1[,-1]
# ## NA to 0
# temp1[is.na(temp1)]<-0
## get 0 to the dialonal
# for(cn in intersect(rownames(temp1), colnames(temp1))) {
# temp1[cn, cn] = 0
# }
#
# ###mapping genes by disease
# tempGene<-adply(Cor_ArrayMatrix,c(3))
# tempGene1 <-aggregate(tempGene[,-1], list(tempGene[,1]), function(x) sum(x>.2&& x<1,na.rm = TRUE))
#
# rownames(tempGene1) <- tempGene1[,1]
# tempGene1 <- tempGene1[-1]
# tempGene1[tempGene1[,3]==1,]
#
# tempGene1[tempGene1[,6]==1,]
# L <-apply(tempGene1,2,function(x) x[x==1] )
# library(circlize)
# chordDiagram(as.matrix(temp1),symmetric = TRUE, directional = TRUE,diffHeight = 0.06)
# #chordDiagram(cor(temp1),symmetric = TRUE, directional = TRUE,diffHeight = 0.06)
# circos.clear()
# library(reshape2)
#
# DF2_CorMatrix <- melt(DF1_CorMatrix)
# DF2_CorMatrix <- subset(DF2_CorMatrix, abs(value) <1)
# DF2_CorMatrix <- subset(DF2_CorMatrix, abs(value) >0.2)
#
#FilterDiseaseCor <- apply(Cor_ArrayMatrix,MARGIN=c(1,2) ,function(x) x[abs(x)>0.7])
## Sum the significant correlated gene between studies and get matrix
## Studies/Studies/numberOfCorrelatedGenes
# mat<-matrix(1:25,5)
# pmean <- function(x,y) (x+y)/2
# mat[] <- pmean(mat, matrix(mat, nrow(mat), byrow=TRUE))
# rownames(mat) <- paste0("Cancer",1:5)
# colnames(mat) <- paste0("Cancer",1:5)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.