Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----install package, eval=FALSE----------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("blacksheepr")
## ----library call-------------------------------------------------------------
library(blacksheepr)
## ----countdata example--------------------------------------------------------
data("sample_phosphodata")
sample_phosphodata[1:5,1:5]
## ----annotation example-------------------------------------------------------
data("sample_annotationdata")
sample_annotationdata[1:5,]
## ----read in data - phospho, echo = TRUE--------------------------------------
data(sample_annotationdata)
comptable <- sample_annotationdata
comptable[1:5,]
dim(comptable)
## -----------------------------------------------------------------------------
data(sample_phosphodata)
phosphotable <- sample_phosphodata
phosphotable[1:5,1:5]
dim(phosphotable)
## ----summarized experiment----------------------------------------------------
suppressPackageStartupMessages(library(SummarizedExperiment))
blacksheep_SE <- SummarizedExperiment(
assays=list(counts=as.matrix(phosphotable)),
colData=DataFrame(comptable))
blacksheep_SE
## ----deva, fig.keep="none"----------------------------------------------------
deva_out <- deva(se = blacksheep_SE,
analyze_negative_outliers = FALSE, aggregate_features = TRUE,
feature_delineator = "-", fraction_samples_cutoff = 0.3,
fdrcutoffvalue = 0.1)
## -----------------------------------------------------------------------------
names(deva_out)
## -----------------------------------------------------------------------------
names(deva_out$pos_outlier_analysis)
## -----------------------------------------------------------------------------
names(deva_out$significant_pos_heatmaps)
## -----------------------------------------------------------------------------
deva_results(deva_out)
## -----------------------------------------------------------------------------
subanalysis_Her2 <- deva_results(deva_out, ID = "Her2", type = "table")
head(subanalysis_Her2)
## -----------------------------------------------------------------------------
subanalysis_Her2 <- deva_results(deva_out, ID = "Her2", type = "table")
head(subanalysis_Her2)
## ---- fig.width = 8, fig.height = 8-------------------------------------------
subanalysis_Her2_HM <- deva_results(deva_out, ID = "Her2", type = "heatmap")
subanalysis_Her2_HM
## ---- eval = FALSE------------------------------------------------------------
# ## NOT RUN
# ## To output separately to pdf
# pdf("outfile.pdf")
# draw(subanalysis_Her2_HM)
# dev.off()
## ----groupings - phospho------------------------------------------------------
groupings <- comparison_groupings(comptable)
## Print out the first 6 samples in each of our first 5 groupings
lapply(groupings, head)[1:5]
## ----make outlier table - phospho---------------------------------------------
## Perform the function
reftable_function_out <- make_outlier_table(phosphotable,
analyze_negative_outliers = FALSE)
## See the names of the outputted objects
names(reftable_function_out)
## Assign them to individual variables
outliertab <- reftable_function_out$outliertab
upperboundtab <- reftable_function_out$upperboundtab
sampmedtab <- reftable_function_out$sampmedtab
## Note we will only use the outlier table - which looks like this now
outliertab[1:5,1:5]
## ----groupingtablist - phospho------------------------------------------------
count_outliers_out <- count_outliers(groupings, outliertab,
aggregate_features = TRUE, feature_delineator = "-")
grouptablist <- count_outliers_out$grouptablist
aggoutliertab <- count_outliers_out$aggoutliertab
fractiontab <- count_outliers_out$fractiontab
names(grouptablist)
## -----------------------------------------------------------------------------
names(grouptablist$PAM50_Her2__Her2)
## -----------------------------------------------------------------------------
head(grouptablist$PAM50_Her2__Her2$feature_counts)
## -----------------------------------------------------------------------------
grouptablist$PAM50_Her2__Her2$samples
## ----outlier analysis - phospho-----------------------------------------------
outlier_analysis_out <- outlier_analysis(grouptablist = grouptablist,
fraction_table = fractiontab,
fraction_samples_cutoff = 0.3)
names(outlier_analysis_out)
head(outlier_analysis_out$
outlieranalysis_for_PAM50_Her2__Her2_vs_PAM50_Her2__not_Her2)
## ----heatmap plotting - phospho, fig.keep="none"------------------------------
plottable <- comptable[do.call(order, c(decreasing = TRUE,
data.frame(comptable[,1:ncol(comptable)]))),]
hm1 <- outlier_heatmap(outlier_analysis_out = outlier_analysis_out,
counttab = fractiontab, metatable = plottable,
fdrcutoffvalue = 0.1)
## To output heatmap to pdf outside of the function
#pdf(paste0(outfilepath, "test_hm1.pdf"))
#hm1
#junk<-dev.off()
## ----hm, fig.width = 8, fig.height = 8, fig.cap = "Example outputted Heatmap"----
hm1$print_outlieranalysis_for_PAM50_Her2__Her2_vs_PAM50_Her2__not_Her2
## ----format annotation data2 - phospho----------------------------------------
dummyannotations <- data.frame(comp1 = c(1,1,2,2,3,3),
comp2 = c("red", "blue", "red", "blue", "green", "green"),
row.names = paste0("sample", seq_len(6)))
dummyannotations
## Use the make_comparison_columns function to create binary columns
expanded_dummyannotations <- make_comparison_columns(dummyannotations)
expanded_dummyannotations
## ----normalize count data - phospho-------------------------------------------
library(pasilla)
pasCts <- system.file("extdata", "pasilla_gene_counts.tsv", package="pasilla")
cts <- as.matrix(read.csv(pasCts,sep="\t",row.names="gene_id"))
norm_cts <- deva_normalization(cts, method = "MoR-log")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.