Description Usage Arguments Value Examples
View source: R/outlier_analysis_functions.R
With the grouptablist generated by count_outliers - run through and run a fisher exact test to get the p.value for the difference in outlier count for each feature in each of your comparisons
1 2 | outlier_heatmap(outlier_analysis_out, analysis_num = NULL,
counttab, metatable, fdrcutoffvalue = 0.1)
|
outlier_analysis_out |
the full outlier_analysis data objet |
analysis_num |
DEFAULT: NULL; if you only want to plot the heatmap for a particular analysis, enter number of that analysis |
counttab |
the raw data before outlier analysis |
metatable |
the complete metatable that was used to generate the comparisons, will be used for annotation of the heatmap |
fdrcutoffvalue |
DEFAULT: 0.1; The FDR value for significance |
outputs a pdf with the heatmap in the current working directory
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | data("sample_phosphodata")
reftable_function_out <- make_outlier_table(sample_phosphodata[1:1000,])
outliertab <- reftable_function_out$outliertab
data("sample_annotationdata")
groupings <- comparison_groupings(sample_annotationdata)
count_outliers_out <- count_outliers(groupings, outliertab,
aggregate_features = FALSE)
grouptablist <- count_outliers_out$grouptablist
fractiontab <- count_outliers_out$fractiontab
outlier_analysis_out <- outlier_analysis(grouptablist,
fraction_table = fractiontab)
metatable <- sample_annotationdata
counttab <- sample_phosphodata
hm1 <- outlier_heatmap(outlier_analysis_out, analysis_num = NULL,
fractiontab, metatable, fdrcutoffvalue = 0.1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.