Nothing
library("aroma.light")
pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
rg <- read.table(pathname, header=TRUE, sep="\t")
nbrOfScans <- max(rg$slide)
rg <- as.list(rg)
for (field in c("R", "G"))
rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
rg$slide <- rg$spot <- NULL
rg <- as.matrix(as.data.frame(rg))
colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
rgC <- rg
layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
for (channel in c("R", "G")) {
sidx <- which(colnames(rg) == channel)
channelColor <- switch(channel, R="red", G="green")
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# The raw data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
plotMvsAPairs(rg, channel=channel)
title(main=paste("Observed", channel))
box(col=channelColor)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# The calibrated data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
plotMvsAPairs(rgC, channel=channel)
title(main=paste("Calibrated", channel))
box(col=channelColor)
} # for (channel ...)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# The average calibrated data
#
# Note how the red signals are weaker than the green. The reason
# for this can be that the scale factor in the green channel is
# greater than in the red channel, but it can also be that there
# is a remaining relative difference in bias between the green
# and the red channel, a bias that precedes the scanning.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
colnames(rgCA) <- c("R", "G")
for (channel in c("R", "G")) {
sidx <- which(colnames(rg) == channel)
rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
}
plotMvsA(rgCA)
title(main="Average calibrated")
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# The affine normalized average calibrated data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Create a matrix where the columns represent the channels
# to be normalized.
rgCAN <- rgCA
# Affine normalization of channels
rgCAN <- normalizeAffine(rgCAN)
plotMvsA(rgCAN)
title(main="Affine normalized A.C.")
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# It is always ok to rescale the affine normalized data if its
# done on (R,G); not on (A,M)! However, this is only needed for
# esthetic purposes.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rgCAN <- rgCAN * 2^5
plotMvsA(rgCAN)
title(main="Rescaled normalized")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.