Nothing
gridResults <- function(y, x, log.lik,
param,
coef,
interval.type,
interval.level,
threshold, contrasts,
weights, offset,
flip.sign,
prior.control,
ngrid, nsd,
ngrid.nuis, nsd.nuis,
log.link,
param.sd,
o, map, cov.mat, sd, out) {
cor.mat <- cov.mat / outer(sd, sd)
# evaluate the unnormalized posterior for 'coef' over a grid
beta.min <- map[coef] - nsd*sd[coef]
beta.max <- map[coef] + nsd*sd[coef]
stopifnot(ngrid %% 2 == 0)
betas <- seq(beta.min, beta.max, length.out=(ngrid + 1))
# we integrate the unnormalized posterior over the other coefficients than 'coef'
unpo <- integrateOther(cor.mat=cor.mat, coef=coef, betas=betas, map=map, sd=sd,
log.lik = log.lik, log.prior = log.prior,
y = y, x = x, param = param, param.sd = param.sd,
prior.control = prior.control,
weights = weights, offset = offset,
ngrid.nuis = ngrid.nuis, nsd.nuis = nsd.nuis)
# check that unpo is monotonic on either side of map
if (!all(diff(unpo[betas < map[coef]]) >= 0)
| !all(diff(unpo[betas > map[coef]]) <= 0)) {
out$diag <- c(o$convergence, o$counts[1], o$value, NA, NA)
out$fsr <- NA
out$ci <- c(NA, NA)
if (!is.null(threshold)) {
out$threshold <- NA
}
return(out)
}
# integration within the grid
unpo.grid.integral <- simpsons(unpo, ngrid, beta.min, beta.max)
# estimate the area outside of the grid on left and right
h <- (beta.max - beta.min)/ngrid # grid unit
# check that the first grid points are not zero
if (unpo[1] > 0 & unpo[2] > 0) {
# fit a,b for tail = exp(a + bx)
# just use the last two values and draw line going outward from grid
left.b <- (log(unpo[2]) - log(unpo[1]))/h
stopifnot(left.b > 0)
left.a <- log(unpo[1]) - left.b * beta.min
# integral of c * exp(b*x) = c/b exp(b*x)
left.c <- exp(left.a)
if (!is.finite(left.c) | !is.finite(exp(left.b * beta.min))){
un.out.left <- 0
un.out.zero.left <- 0
if (!is.null(threshold)) {
un.out.thresh.left <- 0
}
} else {
# unnormalized area out of grid
un.out.left <- left.c / left.b * exp(left.b * beta.min)
# unnormalized area from 0 to -Inf and to Inf
# (used to calculate out.area and FSR when the grid doesn't contain 0)
un.out.zero.left <- left.c / left.b
if (!is.null(threshold)) {
un.out.thresh.left <- left.c / left.b * exp(left.b * threshold)
}
}
} else {
un.out.left <- 0
un.out.zero.left <- 0
if (!is.null(threshold)) {
un.out.thresh.left <- 0
}
}
# check that last grid points are not zero
if (unpo[ngrid] > 0 & unpo[ngrid+1] > 0) {
right.b <- (log(unpo[ngrid+1]) - log(unpo[ngrid]))/h
stopifnot(right.b < 0)
right.a <- log(unpo[ngrid+1]) - right.b * beta.max
right.c <- exp(right.a)
if (!is.finite(right.c) | !is.finite(exp(right.b * beta.max))){
un.out.right <- 0
un.out.zero.right <- 0
} else {
un.out.right <- -right.c / right.b * exp(right.b * beta.max)
un.out.zero.right <- -right.c / right.b
}
} else {
un.out.right <- 0
un.out.zero.right <- 0
}
# add outside area to grid integral
stopifnot(!is.na(un.out.left) & !is.na(un.out.right))
total.integral <- unpo.grid.integral + un.out.left + un.out.right
# normalize posterior and areas out of grid
norm.post <- unpo/total.integral
out.left <- un.out.left/total.integral
out.right <- un.out.right/total.integral
# calculate the interval estimate:
# first we check if the out-of-grid area is < (1 - interval.level) = alpha
if ((out.left + out.right) < (1 - interval.level)) {
# if so, we can use either of these two functions to find
# interval boundaries within the grid (this is the desired routine)
if (interval.type == "HPD"){
# HPD interval:
out$ci <- hpd.int(density = norm.post, grid = betas, h = h,
level = interval.level)
} else {
# credible interval:
out$ci <- cred.int(density = norm.post, grid = betas, h = h,
level = interval.level, area.left = out.left)
}
} else {
# if the out-of-grid area is > (1 - interval.level) = alpha
# then we need to be more careful to find the left and/or right boundary
#
# we will estimate left and right tails to give us alpha/2 each.
# if the area out-of-grid on left is less than alpha/2, this implies
# we need to go into the grid to find the lower bound of credible interval.
# otherwise we find the point out of the grid using an exponential
# approximation of the tail.
half.alpha <- (1 - interval.level)/2
cumdensity <- cumsum(h*norm.post) + out.left
if (out.left < half.alpha) {
left.idx <- which(cumdensity > half.alpha)[1] - 1
left.log.density <- log(norm.post[c(left.idx,(left.idx+1))])
left.grid <- betas[c(left.idx,(left.idx+1))]
intv.l <- solve.x(left.log.density, left.grid,
remn.area = half.alpha - cumdensity[left.idx])
} else {
intv.l <- solve.x(y = c(log(norm.post[2]), log(norm.post[1])),
x = c(betas[1], betas[2]),
remn.area = half.alpha)
}
if (out.right < half.alpha) {
right.idx <- which(cumdensity > (1-half.alpha))[1] - 1
right.log.density <- log(norm.post[c(right.idx,(right.idx+1))])
right.grid <- betas[c(right.idx,(right.idx+1))]
intv.u <- solve.x(right.log.density, right.grid,
remn.area = (1 - half.alpha) - cumdensity[right.idx])
} else {
intv.u <- solve.x(y = c(log(norm.post[ngrid]), log(norm.post[ngrid+1])),
x = c(betas[ngrid], betas[ngrid+1]),
remn.area = half.alpha)
}
out$ci <- c(intv.l, intv.u)
}
# diagnostic values including normalized tail area
# to the left and right of the grid boundaries
out$diag <- c(o$convergence, o$counts[1], o$value, out.left, out.right)
# calculate the false sign rate
# don't have code right now for FSR with param.sd
if (!(is.null(param.sd))) {
out$fsr <- NA
} else {
if (map[coef] > 0) {
fsr.idx <- betas < 0
} else {
fsr.idx <- betas > 0
}
if (sum(fsr.idx) > 0 & is.null(param.sd)) {
# see how much we over-integrate and remove this bit
if (map[coef] > 0) {
out.area <- out.left
next.beta <- betas[max(which(fsr.idx)) + 1]
over.spill.h <- next.beta - 0
over.spill <- over.spill.h * tail(norm.post[fsr.idx],1)
} else {
out.area <- out.right
next.beta <- betas[min(which(fsr.idx)) - 1]
over.spill.h <- 0 - next.beta
over.spill <- over.spill.h * head(norm.post[fsr.idx],1)
}
fsr <- sum(h*norm.post[fsr.idx]) - over.spill + out.area
} else {
# there are no beta grid points on the 'other side' of zero (relative to MAP)
if (map[coef] > 0) {
fsr <- un.out.zero.left/total.integral
} else {
fsr <- un.out.zero.right/total.integral
}
}
out$fsr <- fsr
}
# provide posterior integral for a threshold
# (other than 0 which is given by FSR)
if (!is.null(threshold)) {
if (flip.sign == TRUE & map[coef] < 0){
threshold <- -threshold
}
below.thresh.idx <- betas < threshold
if (sum(below.thresh.idx) > 0) {
next.beta <- betas[max(which(below.thresh.idx)) + 1]
over.spill.h <- next.beta - threshold
over.spill.thresh <- over.spill.h * tail(norm.post[below.thresh.idx],1)
out$thresh <- sum(h*norm.post[below.thresh.idx]) - over.spill.thresh + out.left
} else {
out$thresh <- un.out.thresh.left/total.integral
}
}
out
}
# Simpson's Rule
# Intergration over a range
simpsons <- function(fx, ngrid, min, max) {
h <- (max - min)/ngrid
s <- fx[1] + fx[ngrid+1] + 2*sum(fx[seq(3,ngrid-1,by=2)]) + 4*sum(fx[seq(2,ngrid,by=2)])
h/3 * s
}
cred.int <- function(density, grid, h, level, area.left) {
prob <- (1-level)/2
cumdensity <- cumsum(h*density) + area.left
left.idx <- which(cumdensity > prob)[1] - 1
right.idx <- which(cumdensity > (1-prob))[1] - 1
left.log.density <- log(density[c(left.idx,(left.idx+1))])
right.log.density <- log(density[c(right.idx,(right.idx+1))])
left.grid <- grid[c(left.idx,(left.idx+1))]
right.grid <- grid[c(right.idx,(right.idx+1))]
intv.l <- solve.x(left.log.density, left.grid,
remn.area = prob - cumdensity[left.idx])
intv.u <- solve.x(right.log.density, right.grid,
remn.area = (1 - prob) - cumdensity[right.idx])
c(intv.l,intv.u)
}
## ref: "HDInterval"
hpd.int <- function(density, grid, h, level) {
sorted.density <- sort(density, decreasing = TRUE)
height.idx <- which(cumsum(sorted.density * h) >= level)[1]
height <- sorted.density[height.idx]
idcs <- which(density >= height)
stopifnot(length(which(diff(idcs)>1))==0)
half.remn <- (cumsum(sorted.density * h)[height.idx] - level)/2
left.log.density <- log(density[idcs[1:2]])
right.log.density <- log(density[idcs[c((length(idcs)-1),
length(idcs))]])
left.grid <- grid[idcs[1:2]]
right.grid <- grid[idcs[c((length(idcs)-1),
length(idcs))]]
intv.l <- solve.x(left.log.density, left.grid, remn.area = half.remn)
intv.u <- solve.x(right.log.density, right.grid, remn.area = half.remn)
c(intv.l,intv.u)
}
# function to find the point between x[1] and x[2]
# at which we achieve a given remaining area
# y is given in the log scale, but we are interested
# in the area between exp(y[1]) and exp(y[2])
solve.x <- function(y, x, remn.area) {
b <- diff(y) / diff(x)
c <- exp(y[1])
# if we set the left grid point at x=0,
# we want: int_0^x c exp(b*x) = remn.area
# so c/b exp(b*x) - c/b = remn.area
# then add this to x[1]
x[1] + log( b/c * remn.area + 1)/b
}
integrateOther <- function(cor.mat, coef, betas, map, sd,
log.lik, log.prior,
y, x, param, param.sd,
prior.control,
weights, offset,
ngrid.nuis, nsd.nuis) {
# skip the integration over other coefs if ngrid.nuis == 1
if (ngrid.nuis == 1) {
log.unpo <- sapply(betas, function(b) {
beta.vec <- map
beta.vec[coef] <- b
log.post(beta.vec, log.lik = log.lik, log.prior = log.prior,
y = y, x = x, param = param,
prior.control = prior.control,
weights = weights, offset = offset)
})
log.unpo <- log.unpo - max(log.unpo)
unpo <- exp(log.unpo)
return(unpo)
}
nnuis <- length(map) - 1
nuis.grid.vec <- seq(-nsd.nuis, nsd.nuis, length.out=ngrid.nuis)
nuis.grid <- as.matrix(expand.grid(lapply(seq_len(nnuis), function(i) nuis.grid.vec)))
nuis.grid.big <- matrix(0, nrow=nrow(nuis.grid), ncol=length(map))
nuis.grid.big[,-coef] <- nuis.grid
### old code using dmvnorm() to trim the number of grid evaluations ###
## if (nnuis > 1) {
## nuis.probs <- dmvnorm(nuis.grid, rep(0,nnuis), cor.mat[-coef,-coef])
## nuis.probs <- nuis.probs/sum(nuis.probs)
## # only evaluate on the grid points larger than this cutoff
## nuis.cutoff <- 1/nrow(nuis.grid)
## stopifnot(any(nuis.probs > nuis.cutoff))
## nuis.grid.big <- nuis.grid.big[nuis.probs > nuis.cutoff,]
## }
nng <- nrow(nuis.grid.big)
if (is.null(param.sd)) {
log.unpo.mat <- matrix(nrow=nng, ncol=length(betas))
log.unpo.mat <- fillLogUnpo(ng = nng,
LUM = log.unpo.mat,
betas = betas,
NGB = nuis.grid.big,
map = map, sd = sd, coef = coef,
log.lik = log.lik, log.prior = log.prior,
y = y, x = x, param = param,
prior.control = prior.control,
weights = weights, offset = offset)
log.unpo.mat <- log.unpo.mat - max(log.unpo.mat)
unpo.mat <- exp(log.unpo.mat)
unpo <- colSums(unpo.mat)
} else {
# also include 'param' in the nuisance grid for integration
# use a narrower grid than for the coefficients by 1/2 x
npg <- ngrid.nuis
param.grid <- seq(-nsd.nuis/2,nsd.nuis/2,length.out=npg)
norm.po.mat <- matrix(nrow=npg, ncol=length(betas))
for (j in seq_len(npg)) {
param.star <- param + param.sd * param.grid[j]
log.unpo.mat <- matrix(nrow=nng, ncol=length(betas))
log.unpo.mat <- fillLogUnpo(ng = nng,
LUM = log.unpo.mat,
betas = betas,
NGB = nuis.grid.big,
map = map, sd = sd, coef = coef,
log.lik = log.lik, log.prior = log.prior,
y = y, x = x, param = param.star,
prior.control = prior.control,
weights = weights, offset = offset)
log.unpo.mat <- log.unpo.mat - max(log.unpo.mat)
unpo.mat <- exp(log.unpo.mat)
unpo <- colSums(unpo.mat)
unpo.grid.integral <- simpsons(unpo, length(betas)-1, min(betas), max(betas))
# rough version of norm.post (ignores out of grid area)
norm.po.mat[j,] <- unpo / unpo.grid.integral
}
# weight the contribution of the different evaluations
# of 'param' by a normal density
param.wts <- dnorm(param.grid)
unpo <- colSums(norm.po.mat * param.wts)
}
unpo
}
# acronyms here
# LUM = log un-normalized posterior matrix
# NGB = nuisance grid, big
fillLogUnpo <- function(ng, LUM, betas, NGB,
map, sd, coef, log.lik, log.prior,
y, x, param , prior.control,
weights, offset){
for (i in seq_len(ng)) {
LUM[i,] <- sapply(betas, function(b) {
beta.vec <- map + NGB[i, ] * sd
beta.vec[coef] <- b
log.post(beta.vec, log.lik = log.lik, log.prior = log.prior,
y = y, x = x, param = param,
prior.control = prior.control,
weights = weights, offset = offset)})
}
LUM
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.