Nothing
#' Approximate posterior estimation for GLM coefficients
#'
#' apeglm provides Bayesian shrinkage estimators for effect sizes
#' in GLM models, using approximation of the posterior for individual coefficients.
#'
#' \code{prior.control} is a list of parameters that will be passed to determine
#' the prior distribution. Users are allowed to have a Normal prior on the
#' intercept, and a t prior on the non-intercept coefficients (similar
#' to \code{bayesglm} in the \code{arm} package. The following are defaults:
#'
#' \itemize{
#' \item \code{no.shrink = 1}: index of the coefficient(s) not to shrink
#' \item \code{prior.mean = 0}: mean of t prior
#' \item \code{prior.scale = 1}: scale of t prior
#' \item \code{prior.df = 1}: df of t prior
#' \item \code{prior.no.shrink.mean = 0}: mean of Normal
#' \item \code{prior.no.shrink.scale = 15}: scale of Normal
#' }
#'
#' So without specifying \code{prior.control}, the following is set inside \code{apeglm}:
#'
#' \code{prior.control <- list(no.shrink=1,prior.mean=0,prior.scale=1,
#' prior.df=1,prior.no.shrink.mean=0,prior.no.shrink.scale=15)}
#'
#' Note that the prior should be defined on the natural log scale for a log link GLM.
#'
#' @param Y the observations, which can be a matrix or SummarizedExperiment,
#' with columns for samples and rows for "features" (e.g. genes in a genomic context).
#' If Y is a SummarizedExperiment, \code{apeglm} will return, in addition
#' to other list items, a GRanges or GRangesList \code{ranges} with the
#' estimated coefficients as metadata columns.
#' @param x design matrix, with intercept in the first column.
#' Continuous-valued columns should be centered and scaled to unit variance,
#' or at least set so that the scale (in SD) is not very large or very small
#' @param log.lik the log of likelihood function, specified by the user.
#' For Negative Binomial distribution, user can use \code{logLikNB} provided within the package.
#' @param param the other parameter(s) to be used in the likelihood function,
#' e.g. the dispersion parameter for a negative binomial distribution.
#' this can be a vector or a matrix (with columns as parameters)
#' @param coef (optional) the index of the coefficient for which
#' to generate posterior estimates (FSR and intervals)
#' @param mle (optional) a 2 column matrix giving the MLE and its standard error
#' of \code{coef}. this will be used to adapt the scale of the prior (empirical Bayes).
#' This overrides the \code{prior.scale} specified by \code{prior.control}
#' and sets \code{no.shrink} to all coefficients other than \code{coef}.
#' Note that these MLE's and SE's should be on the natural log scale for a log link GLM.
#' @param no.shrink logical, if TRUE, apeglm won't perform shrinkage (default is FALSE)
#' @param interval.type (optional) can be "laplace", "HPD", or "credible", which specifies
#' the type of Bayesian interval that the user wants to output; "laplace" represents the
#' Laplace approximation of the posterior mode
#' @param interval.level (optional) default is 0.95
#' @param threshold (optional) a threshold for integrating posterior probabilities,
#' see details under 'Value'.
#' Note that this should be on the natural log scale for a log link GLM.
#' @param contrasts (optional) contrast matrix, same number of rows as \code{x}
#' @param weights (optional) weights matrix, same shape as \code{Y}
#' @param offset (optional) offsets matrix, same shape as \code{Y}.
#' Note that this should be on the natural log scale for a log link GLM.
#' @param flip.sign whether to flip the sign of threshold value
#' when MAP is negative, default is TRUE (threshold must then be positive)
#' @param prior.control see Details
#' @param multiplier a positive number, when the prior is adapted to the \code{mle}
#' matrix provided, this parameter connects the scale of the estimated distribution
#' of betas to the scale of the prior. the default value was chosen based on
#' FSR and error analysis of simulated data
#' @param ngrid the number of grid points for grid integration of intervals
#' @param nsd the number of SDs of the Laplace posterior approximation to set the
#' left and right edges of the grid around the MAP
#' @param ngrid.nuis the number of grid points for nuisance parameters
#' @param nsd.nuis the number of Laplace standard errors to set the
#' left and right edges of the grid around the MAP of the nuisance parameters
#' @param log.link whether the GLM has a log link (default = TRUE)
#' @param param.sd (optional) potential uncertainty measure on the parameter \code{param}.
#' this should only be a vector, used when \code{param} specifies a single parameter
#' @param method options for how apeglm will find the posterior mode and SD.
#' The default is "general" which allows the user to specify a likelihood
#' in a general way. Alternatives for faster performance with the Negative Binomial
#' likelihood are:
#' "nbinomR", "nbinomCR", and "nbinomC" / "nbinomC*"
#' These alternative methods should provide increasing speeds,
#' respectively.
#' (Also for beta binomial, substitute "betabin" for "nbinom" in the
#' above.)
#' From testing on RNA-seq data, the nbinom methods are roughly 5x, 10x and 50x faster than "general".
#' Note that "nbinomC" uses C++ to find the MAP for the coefficients,
#' but does not calculate or return the posterior SD or other quantities.
#' "nbinomC*" is the same as "nbinomC", but includes a random start for finding the MAP.
#' "nbinomCR" uses C++ to calculate the MAP and then estimates
#' the posterior SD in R, with the exception that if the MAP from C++
#' did not converge or gives negative estimates of posterior variance,
#' then this row is refit using optimization in R.
#' These alternatives require the degrees of freedom for the prior distribution to be 1,
#' and will ignore any function provided to the \code{log.lik} argument.
#' \code{param} should specify the dispersion parameter of a Negative Binomial
#' (such that Var = mu + param mu^2).
#' @param optim.method the method passed to \code{optim}
#' @param bounds the bounds for the numeric optimization
#'
#' @return a list of matrices containing the following components:
#' \itemize{
#' \item \code{map}: matrix of MAP estimates, columns for coefficients and rows for features
#' \item \code{sd}: matrix of posterior SD, same shape as \code{map}
#' \item \code{prior.control}: list with details on the prior
#' \item \code{fsr}: vector of the false sign rate for \code{coef}
#' \item \code{interval}: matrix of either HPD or credible interval for \code{coef}
#' \item \code{thresh}: vector of the posterior probability that the estimated parameter
#' is smaller than the threshold value specified in \code{threshold}
#' when MAP is positive (or greater than
#' -1 * threshold value when MAP is negative and flip.sign is TRUE)
#' \item \code{diag}: matrix of diagnostics
#' \item \code{contrast.map}: vector of MAP estimates corresponding to the \code{contrast}
#' when \code{contrast} is given
#' \item \code{contrast.sd}: vector of posterior SD corresponding to the \code{contrast}
#' when \code{contrast} is given
#' \item \code{ranges}: GRanges or GRangesList with the estimated coefficients,
#' if \code{Y} was a SummarizedExperiment.
#' }
#'
#' Note that all parameters associated with coefficients,
#' e.g. \code{map}, \code{sd}, etc., are returned on the natural log scale for a log link GLM.
#'
#' @references
#'
#' Adaptive Cauchy prior:
#'
#' Zhu, A. (2018) Heavy-tailed prior distributions for sequence count data:
#' removing the noise and preserving large differences. Bioinformatics. doi: 10.1093/bioinformatics/bty895
#'
#' False sign rate and s-value:
#'
#' Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2. doi: 10.1093/biostatistics/kxw041
#'
#' @importFrom Rcpp sourceCpp
#' @importFrom SummarizedExperiment assay rowRanges
#' @importFrom GenomicRanges mcols<-
#' @importFrom stats dnorm pnorm qnorm rnorm sd dt optim optimHess uniroot
#' @importFrom utils head tail
#' @importFrom methods is
#'
#' @useDynLib apeglm
#'
#' @export
#'
#' @examples
#'
#' # Simulate RNA-Seq read counts data
#'
#' # 5 samples for each of the two groups
#' # a total of 100 genes
#' n.per.group <- 5
#' n <- n.per.group * 2
#' m <- 100
#'
#' # The design matrix includes one column of intercept
#' # and one column indicating samples that belong to the second group
#' condition <- factor(rep(letters[1:2], each = n.per.group))
#' x <- model.matrix(~condition)
#'
#' # Specify the standard deviation of beta (LFC between groups)
#' beta.sd <- 2
#' beta.cond <- rnorm(m, 0, beta.sd)
#' beta.intercept <- runif(m, 2, 6)
#' beta.mat <- cbind(beta.intercept, beta.cond)
#'
#' # Generate the read counts
#' mu <- exp(t(x %*% t(beta.mat)))
#' Y <- matrix(rnbinom(m*n, mu=mu, size=1/.1), ncol = n)
#'
#' # Here we will use the negative binomial log likelihood
#' # which is an exported function. See 'logLikNB' for details.
#' # For the NB:
#' # 'param' is the dispersion estimate (1/size)
#' # 'offset' can be used to adjust for size factors (log of size factors)
#' param <- matrix(0.1, nrow = m, ncol = 1)
#' offset <- matrix(0, nrow = m, ncol = n)
#'
#' # Shrinkage estimator of betas:
#' # (for adaptive shrinkage, 'apeglm' requires 'mle' coefficients
#' # estimated with another software, or by first running 'apeglm'
#' # setting 'no.shrink=TRUE'.)
#' res <- apeglm(Y = Y, x = x,
#' log.lik = logLikNB,
#' param = param,
#' offset = offset,
#' coef = 2)
#'
#' head(res$map)
#' plot(beta.mat[,2], res$map[,2])
#' abline(0,1)
#'
apeglm <- function(Y, x, log.lik,
param=NULL,
coef=NULL,
mle=NULL,
no.shrink=FALSE,
interval.type=c("laplace", "HPD", "credible"),
interval.level=0.95,
threshold=NULL, contrasts,
weights=NULL, offset=NULL,
flip.sign=TRUE,
prior.control,
multiplier=1,
ngrid=50, nsd=5,
ngrid.nuis=5, nsd.nuis=2,
log.link=TRUE,
param.sd=NULL,
method=c("general",
"nbinomR","nbinomCR","nbinomC","nbinomC*",
"betabinR", "betabinCR", "betabinC", "betabinC*"),
optim.method="BFGS",
bounds=c(-Inf,Inf)) {
if (missing(prior.control)) {
prior.control <- list(
no.shrink = 1,
prior.mean = 0,
prior.scale = 1,
prior.df = 1,
prior.no.shrink.mean = 0,
prior.no.shrink.scale = 15
)
}
interval.type <- match.arg(interval.type)
method <- match.arg(method)
# with beta-binomial distribution, we may want to shrink the intercept
# (this is not the case for negative binomial)
# this flag allows for shrinkage of intercept
if (method %in% c("betabinR", "betabinCR", "betabinC", "betabinC*")) {
allow.shrink.intercept <- TRUE
log.link <- FALSE
} else {
allow.shrink.intercept <- FALSE
}
stopifnot(ncol(Y) == nrow(x))
stopifnot(multiplier > 0)
if (no.shrink) {
prior.control$no.shrink <- seq_len(ncol(x))
}
if (!is.null(mle)) {
stopifnot(!is.null(coef))
prior.control$no.shrink <- setdiff(seq_len(ncol(x)), coef)
prior.control$prior.var <- priorVar(mle)
prior.scale <- multiplier * sqrt(prior.control$prior.var)
prior.scale <- min(prior.scale, 1)
prior.control$prior.scale <- prior.scale
}
if (method != "general") {
stopifnot(prior.control$prior.df == 1)
stopifnot(prior.control$prior.mean == 0)
stopifnot(prior.control$prior.no.shrink.mean == 0)
}
if (!is.matrix(param)) param <- as.matrix(param, ncol=1)
# don't have code yet for use of threshold with param.sd
stopifnot(is.null(param.sd) | is.null(threshold))
if (flip.sign==TRUE & !is.null(threshold)) stopifnot(threshold > 0)
x <- as.matrix(x)
xnames <- dimnames(x)[[2]]
nvars <- ncol(x)
hasRanges <- FALSE
if (is(Y, "SummarizedExperiment")) {
if (is(Y, "RangedSummarizedExperiment")) {
ranges <- rowRanges(Y)
hasRanges <- TRUE
}
Y <- assay(Y)
}
Y <- as.matrix(Y)
rownames <- dimnames(Y)[[1]]
nrows <- nrow(Y)
if (!is.null(weights)) {
stopifnot(ncol(weights)==ncol(Y))
stopifnot(nrow(weights)==nrow(Y))
}
if (!is.null(offset)) {
stopifnot(ncol(offset)==ncol(Y))
stopifnot(nrow(offset)==nrow(Y))
}
if (method == "general") {
offset.in.log.lik <- any(grepl("offset",as.character(body(log.lik))))
if (offset.in.log.lik) {
if (is.null(offset)) {
stop("log.lik uses 'offset', so 'offset' should be non-NULL")
}
}
}
intercept.idx <- rowSums(x == 0) == nvars - 1
if (sum(intercept.idx) > 0) {
basemean <- rowMeans(Y[,intercept.idx,drop=FALSE])
} else {
basemean <- rowMeans(Y)
}
result <- list()
result$map <- matrix(nrow=nrows, ncol=nvars,
dimnames=list(rownames, xnames))
result$sd <- matrix(nrow=nrows, ncol=nvars,
dimnames=list(rownames, xnames))
result$prior.control <- prior.control
if (!is.null(coef)) {
if (!(is.numeric(coef) & coef==round(coef) & length(coef) == 1)){
stop("coef must be numeric vector of length 1, and an integer")
}
if (!allow.shrink.intercept & coef < 2) {
stop("'coef' must be greater than 2")
}
if (coef > ncol(x)) {
stop("'coef' must be less than or equal to the number of columns of 'x'")
}
result$fsr <- matrix(nrow=nrows, ncol=1,
dimnames=list(rownames, xnames[coef]))
result$svalue <- matrix(nrow=nrows, ncol=1,
dimnames=list(rownames, xnames[coef]))
interval.nms <- list(rownames, c(paste0((1-interval.level)/2*100,"%"),
paste0((1-(1-interval.level)/2)*100,"%")))
result$interval <- matrix(nrow=nrows, ncol=2, dimnames=interval.nms)
if (!is.null(threshold)) {
result$thresh <- matrix(nrow=nrows, ncol=1,
dimnames=list(rownames, xnames[coef]))
}
}
# diagnostic columns differ if we use laplace or not for posterior estimation
if (interval.type != "laplace") {
diag.cols <- c("conv","count","value","out.left","out.right")
} else {
diag.cols <- c("conv","count","value")
}
result$diag <- matrix(NA, nrow=nrows, ncol=length(diag.cols),
dimnames=list(rownames, diag.cols))
if (!missing(contrasts)) {
ncontr <- ncol(contrasts)
contrast.nms <- list(rownames, colnames(contrasts))
result$contrast.map <- matrix(nrow=nrows, ncol=ncontr,
dimnames=contrast.nms)
result$contrast.sd <- matrix(nrow=nrows, ncol=ncontr,
dimnames=contrast.nms)
}
# fast routines for negative binomial in C++
if (method %in% c("nbinomCR","nbinomC","nbinomC*")) {
result <- nbinomCppRoutine(Y, x, weights, offset, param,
prior.control, method, result)
}
# ...likewise for beta binomial in C++
if (method %in% c("betabinC", "betabinCR", "betabinC*")) {
result <- betabinCppRoutine(Y, x, weights, offset, param,
prior.control, method, result,
bounds, optim.method)
}
# nbinomC, nbinomC*, betabinC, or betabinC* just return the result
if (method %in% c("nbinomC","nbinomC*","betabinC","betabinC*")) {
return(result)
}
for (i in seq_len(nrows)) {
weights.row <- if (is.null(weights)) NULL else weights[i,]
offset.row <- if (is.null(offset)) NULL else offset[i,]
param.i <- if (is.null(param)) NULL else param[i,,drop=TRUE] # drop the dimension
param.sd.i <- if (is.null(param.sd)) NULL else param.sd[i]
prefit.beta <- if (method %in% c("nbinomCR","betabinCR")) result$map[i,] else NULL
prefit.conv <- if (method %in% c("nbinomCR","betabinCR")) result$diag[i,"conv"] else NULL
row.result <- apeglm.single(y = Y[i,], x=x, log.lik=log.lik,
param=param.i, coef=coef, interval.type=interval.type, interval.level=interval.level,
threshold=threshold, contrasts=contrasts, weights=weights.row, offset=offset.row,
flip.sign=flip.sign, prior.control=prior.control,
ngrid=ngrid, nsd=nsd, ngrid.nuis=ngrid.nuis, nsd.nuis=nsd.nuis,
log.link=log.link, param.sd=param.sd.i, basemean=basemean[i],
prefit.beta=prefit.beta, prefit.conv=prefit.conv,
method=method, optim.method=optim.method, bounds=bounds)
result$map[i,] <- row.result$map
result$sd[i,] <- row.result$sd
if (!is.null(coef)) {
result$fsr[i,] <- row.result$fsr
result$interval[i,] <- row.result$ci
if (!is.null(threshold) & !is.na(row.result$map[coef])) {
if (flip.sign == TRUE & row.result$map[coef] < 0){
result$thresh[i,] <- 1 - row.result$threshold
} else {
result$thresh[i,] <- row.result$threshold
}
}
}
result$diag[i,] <- row.result$diag
if (!missing(contrasts)) {
result$contrast.map[i,] <- row.result$contrast.map
result$contrast.sd[i,] <- row.result$contrast.sd
}
}
if (!is.null(coef)) {
result$svalue[,1] <- svalue(result$fsr)
}
if (hasRanges) {
mcols(ranges) <- result$map
result$ranges <- ranges
}
return(result)
}
# Log of prior density
# Allow for t or normal prior for intercept, and t for coefficients
# work on scale later
log.prior <- function(beta, prior.control) {
p <- prior.control
log.prior.no.shrink <- sum(dnorm(beta[p$no.shrink], mean = p$prior.no.shrink.mean,
sd = p$prior.no.shrink.scale, log=TRUE))
# the scaling of the t density can be left out after taking the log
log.prior.shrink <- sum(dt(beta[-p$no.shrink]/p$prior.scale,
df = p$prior.df, ncp = p$prior.mean, log=TRUE))
log.prior.no.shrink + log.prior.shrink
}
log.post <- function(beta, log.lik, log.prior, y, x, param, weights,
offset, prior.control) {
if (is.null(weights)) {
out <- sum(log.lik(y, x, beta, param, offset)) + log.prior(beta, prior.control)
} else {
out <- t(weights) %*% log.lik(y, x, beta, param, offset) + log.prior(beta, prior.control)
}
if (!is.finite(out)) return(-1e100)
out
}
# For each row, we use this apeglm.single
# (unexported)
apeglm.single <- function(y, x, log.lik, param, coef, interval.type, interval.level,
threshold, contrasts, weights, offset, flip.sign, prior.control,
ngrid, nsd, ngrid.nuis, nsd.nuis, log.link=TRUE, param.sd,
basemean, prefit.beta, prefit.conv, method, optim.method, bounds) {
if (log.link & all(y == 0)) {
out <- buildNAOut(coef, interval.type, threshold, contrasts)
return(out)
}
zero.start <- method %in% c("betabinR","betabinCR")
if (is.null(prefit.beta)) {
if (zero.start) {
init <- rep(0,length.out=ncol(x))
} else {
init <- rep(c(1,-1),length.out=ncol(x))
}
if (log.link) {
if (basemean == 0) {
init[1] <- 0
} else {
init[1] <- log(basemean)
}
}
} else {
init <- prefit.beta
}
# numerical optimization to find the MAP and posterior SD
if (optim.method != "L-BFGS-B") {
bounds <- c(-Inf, Inf)
}
if (method == "general") {
o <- optim(par = init, fn = log.post,
log.lik = log.lik, log.prior = log.prior,
y = y, x = x, param = param,
weights = weights, offset = offset,
prior.control = prior.control,
control=list(fnscale=-1),
lower=bounds[1], upper=bounds[2],
hessian=TRUE, method=optim.method)
} else if (method == "nbinomR") {
# this optimizes all rows in R, with function and gradient
# written specifically for negative binomial likelihood
o <- optimNbinom(init=init, y=y, x=x, param=param,
weights=weights, offset=offset,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method)
} else if (method == "nbinomCR") {
# this uses previously estimated C++ MAP for negative binomial likelihood
# and calculates the Hessian uses optimHess().
# if the Hessian gives negative variance estimates for a row, it will
# re-optimize the negative log posterior using method="nbinomR" for that row
o <- optimNbinomHess(init=init, y=y, x=x, param=param,
weights=weights, offset=offset,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method,
prefit.conv=prefit.conv)
} else if (method == "betabinR") {
theta <- param[1]
size <- param[-1]
o <- optimBetabin(init=init, y=y, x=x, size=size,
theta=theta, weights=weights,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method)
} else if (method == "betabinCR") {
o <- optimBetabinHess(init=init, y=y, x=x, param=param,
weights=weights,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method,
prefit.conv=prefit.conv)
}
map <- o$par
cov.mat <- -solve(o$hessian)
if (any(diag(cov.mat) <= 0)) {
out <- buildNAOut(coef, interval.type, threshold, contrasts)
out$map <- map
return(out)
}
sd <- sqrt(diag(cov.mat))
out <- list(map=map, sd=sd)
# calculate statistics for a particular coefficient
if (!is.null(coef)) {
# this is the default interval type - Laplace approximation of posterior
if (interval.type == "laplace") {
stopifnot(is.null(param.sd)) # not implemented
qn <- qnorm((1 - interval.level)/2,lower.tail=FALSE)
out$ci <- c(map[coef] - qn * sd[coef], map[coef] + qn * sd[coef])
out$diag <- c(o$convergence, o$counts[1], o$value)
out$fsr <- pnorm(-abs(map[coef]),0,sd[coef])
if (!is.null(threshold)) {
if (flip.sign) {
out$threshold <- pnorm(sign(map[coef])*threshold, map[coef], sd[coef])
} else {
out$threshold <- pnorm(threshold, map[coef], sd[coef])
}
}
} else {
# use a grid to evaluate posterior
out <- gridResults(y=y, x=x, log.lik=log.lik,
param=param,
coef=coef,
interval.type=interval.type,
interval.level=interval.level,
threshold=threshold, contrasts=contrasts,
weights=weights, offset=offset,
flip.sign=flip.sign,
prior.control=prior.control,
ngrid=ngrid, nsd=nsd,
ngrid.nuis=ngrid.nuis, nsd.nuis=nsd.nuis,
log.link=log.link,
param.sd=param.sd,
o=o, map=map, cov.mat=cov.mat, sd=sd, out=out)
}
} else {
# just diagnostic values (if coef not specified)
out$diag <- c(o$convergence, o$counts[1], o$value)
}
# calculate contrasts
if (!missing(contrasts)) {
contrasts <- data.matrix(contrasts)
stopifnot(nrow(contrasts) == ncol(x))
stopifnot(ncol(contrasts) >= 1)
out$contrast.map <- map %*% contrasts
out$contrast.sd <- t(sqrt(diag(t(contrasts) %*% cov.mat %*% contrasts)))
}
out
}
buildNAOut <- function(coef, interval.type, threshold, contrasts) {
out <- list(map=NA, sd=NA)
if (!is.null(coef)) {
out$fsr <- NA
out$ci <- c(NA, NA)
if (!is.null(threshold)) {
out$threshold <- NA
}
}
if (interval.type != "laplace") {
out$diag <- c(NA, NA, NA, NA, NA)
} else {
out$diag <- c(NA, NA, NA)
}
if (!missing(contrasts)) {
out$contrast.map <- NA
out$contrast.sd <- NA
}
out
}
nbinomCppRoutine <- function(Y, x, weights, offset, param,
prior.control, method, result) {
nonzero <- rowSums(Y) > 0
# the C++ code uses transposed data (samples x genes)
YNZ <- t(Y[nonzero,,drop=FALSE])
if (is.null(weights)) {
weights <- matrix(1, nrow=nrow(Y), ncol=ncol(Y))
}
if (is.null(offset)) {
offset <- matrix(0, nrow=nrow(Y), ncol=ncol(Y))
}
weightsNZ <- t(weights[nonzero,,drop=FALSE])
offsetNZ <- t(offset[nonzero,,drop=FALSE])
size <- 1/param[nonzero]
sigma <- prior.control$prior.no.shrink.scale
S <- prior.control$prior.scale
no.shrink <- prior.control$no.shrink
shrink <- setdiff(seq_len(ncol(x)), no.shrink)
# now, estimate the scale of the function
init <- rep(0, ncol(x))
cnst <- sapply(seq_len(sum(nonzero)), function(i) {
nbinomFn(init, x=x, y=YNZ[,i], size=size[i], weights=weightsNZ[,i],
offset=offsetNZ[,i], sigma=sigma, S=S, no.shrink=no.shrink,
shrink=shrink, cnst=0)
})
cnst <- ifelse(cnst > 1, cnst, 1)
# now optimize over all rows using L-BFGS run in C++
# on a scaled version of the negative posterior.
# we run it twice to check for stability and issues w/ local maxima
if (method == "nbinomC*") {
init <- rnorm(ncol(x),0,.5)
} else {
init <- rep(c(.1,-.1),length.out=ncol(x))
}
out <- nbinomGLM(x=x, Y=YNZ, size=size, weights=weightsNZ,
offset=offsetNZ, sigma2=sigma^2, S2=S^2,
no_shrink=no.shrink, shrink=shrink,
init=init, cnst=cnst)
if (method == "nbinomCR") {
init2 <- rep(c(-.1,.1),length.out=ncol(x))
out2 <- nbinomGLM(x=x, Y=YNZ, size=size, weights=weightsNZ,
offset=offsetNZ, sigma2=sigma^2, S2=S^2,
no_shrink=no.shrink, shrink=shrink,
init=init2, cnst=cnst)
}
## valueR <- sapply(seq_len(sum(nonzero)), function(i) {
## nbinomFn(out$beta[,i], x=x, y=YNZ[,i], size=size[i], weights=weightsNZ[,i],
## offset=offsetNZ[,i], sigma=sigma, S=S, no.shrink=no.shrink,
## shrink=shrink, cnst=0)/cnst[i] + 10
## })
## nas <- rep(NA, nrow(result$diag)); result$diag <- cbind(result$diag, valueR=nas)
## result$diag[nonzero,"valueR"] <- valueR
result$map[nonzero,] <- t(out$betas)
result$diag[nonzero,"conv"] <- out$convergence
result$diag[nonzero,"value"] <- out$value
if (method == "nbinomCR") {
# if the two fits above disagree by .01, say it did not converge
delta <- apply(abs(out$betas - out2$betas), 2, max)
result$diag[nonzero,"conv"][delta > .01] <- -1
}
result
}
# beta-binomial fitting routine, written by Josh Zitovsky, Spring semester 2019
betabinCppRoutine <- function(Y, x, weights, offset, param,
prior.control, method, result,
bounds, optim.method) {
# parameter for beta binomial
cap <- 0.001
nonzero <- rowSums(Y) >= 0
YNZ <- t(Y[nonzero, , drop = FALSE])
if (is.null(weights)) {
weights <- matrix(1, nrow = nrow(Y), ncol = ncol(Y))
}
weightsNZ <- t(weights[nonzero, , drop = FALSE])
theta <- param[, 1]
size <- param[, -1, drop = FALSE]
sizeNZ <- t(size[nonzero, , drop = FALSE])
sigma <- prior.control$prior.no.shrink.scale
S <- prior.control$prior.scale
no.shrink <- prior.control$no.shrink
shrink <- setdiff(seq_len(ncol(x)), no.shrink)
if (method == "betabinC*") {
init <- rnorm(ncol(x),0,.5)
} else {
init <- rep(c(.1,-.1),length.out=ncol(x))
}
# creating vector 'cnst' to scale likelihood and gradient
# and prevent very large/small values
initC <- c(3, rep(0, ncol(x)-1))
cnst <- sapply(seq_len(sum(nonzero)), function(i) {
betabinFn(initC, x=x, y=YNZ[,i], size=sizeNZ[,i], theta=theta[i], weights=weightsNZ[,i],
sigma=sigma, S=S, no.shrink=no.shrink,
shrink=shrink, cnst=0)
})
cnst <- abs(cnst)
cnst <- ifelse(cnst > 100, cnst, 100)
lbd <- cap
ubd <- 1/cap - 1
tol <- 1e-12
out <- betabinGLM(x = x, Y = YNZ, sizes = sizeNZ,
thetas = theta, weights = weightsNZ, sigma2 = sigma^2,
S2 = S^2, no_shrink = no.shrink, shrink = shrink,
init = init, cnst=cnst, tol=tol, lbd=lbd, ubd=ubd)
## if (method == "betabinCR") {
## init2 <- rep(c(-.1,.1),length.out=ncol(x))
## out2 <- betabinGLM(x = x, Y = YNZ, sizes = sizeNZ,
## thetas = theta, weights = weightsNZ, sigma2 = sigma^2,
## S2 = S^2, no_shrink = no.shrink, shrink = shrink,
## init = init2, cnst=cnst, tol=tol, lbd=lbd, ubd=ubd)
## }
result$map[nonzero,] <- t(out$betas)
result$diag[nonzero,"conv"] <- out$convergence
result$diag[nonzero,"value"] <- out$value
# in the case that the C++ code got a lgamma(0) or
# something during optimization, re-run in R
no.number <- is.na(out$value)
need.change <- (1:nrow(result$map))[no.number]
for (i in need.change) {
o <- optimBetabin(init, Y[i,], x, size[i,], theta[i],
weights[i,], prior.control,
bounds, optim.method)
result$diag[i,"conv"] <- o$convergence
result$diag[i,"value"] <- o$value
result$map[i,] <- o$par
}
## if (method == "betabinCR") {
## # if the two fits above disagree by .01, say it did not converge
## delta <- apply(abs(out$betas - out2$betas), 2, max)
## result$diag[nonzero,"conv"][delta > .01] <- -1
## }
result
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.