Nothing
test_that(paste0("Test LCD (linear combination decomposition) ",
"with small hand made data frames"), {
## define raw data
W_prim <- matrix(c(1,2,3,4,5,6),ncol=2)
W_prim_df <- as.data.frame(W_prim)
W_df <- YAPSA:::normalize_df_per_dim(W_prim_df,2) # corresponds to the sigs
W <- as.matrix(W_df)
## 1. Simple case: non-negativity already in raw data
H <- matrix(c(2,5,3,6,1,9,1,2),ncol=4)
H_df <- as.data.frame(H) # corresponds to the exposures
V <- W %*% H # matrix multiplication
V_df <- as.data.frame(V) # corresponds to the mutational catalogue
## apply function to be tested
exposures_df <- YAPSA:::LCD(V_df,W_df)
## compare
expect_lt(max(abs(exposures_df - H_df)),1e-05)
## 2. more complicated: raw data already contains negative elements
## define indices where sign is going to be swapped
sign_ind <- c(5,7)
## now compute the indices of the other fields in the columns affected
## by the sign change
row_ind <- sign_ind %% dim(H)[1]
temp_ind <- 2*row_ind -1
other_ind <- sign_ind + temp_ind
## alter the matrix H to yield a new mutational catalogue
H_compl <- H
H_compl[sign_ind] <- (-1)*H[sign_ind]
H_compl_df <- as.data.frame(H_compl) # corresponds to the exposures
V_compl <- W %*% H_compl # matrix multiplication
V_compl_df <- as.data.frame(V_compl) # corresponds to the mutational catalog
## apply function to be tested
exposures_df <- YAPSA:::LCD(V_compl_df,W_df)
exposures <- as.matrix(exposures_df)
test_df <- rep(0,length(sign_ind))
expect_that(exposures[sign_ind], is_identical_to(test_df))
expect_true(all(exposures[other_ind]<H_compl[other_ind]))
})
test_that("Test LCD_cutoff with small hand made data frames", {
## define raw data
W_prim <- matrix(c(1,2,3,4,5,6),ncol=2)
W_prim_df <- as.data.frame(W_prim)
W_df <- YAPSA:::normalize_df_per_dim(W_prim_df,2) # corresponds to the sigs
W <- as.matrix(W_df)
H <- matrix(c(2,5,3,6,1,9,1,2),ncol=4)
H_df <- as.data.frame(H) # corresponds to the exposures
V <- W %*% H # matrix multiplication
V_df <- as.data.frame(V) # corresponds to the mutational catalog
## apply function to be tested
exposures_small_cutoff_list <- YAPSA:::LCD_cutoff(V_df,W_df,in_cutoff = 0.05)
exposures_big_cutoff_list <- YAPSA:::LCD_cutoff(V_df,W_df,in_cutoff = 0.4)
## compare
expect_lt(max(abs(exposures_small_cutoff_list$exposures - H_df)),1e-05)
expect_equal(dim(exposures_big_cutoff_list$exposures)[1], dim(H_df)[1] - 1)
})
test_that("Test LCD_SMC with small hand made data frames", {
## define raw data
W_prim <- matrix(c(1,2,3,4,5,6),ncol=2)
W_prim_df <- as.data.frame(W_prim)
W_df <- YAPSA:::normalize_df_per_dim(W_prim_df,2) # corresponds to the sigs
W <- as.matrix(W_df)
H <- matrix(c(2,5,3,6,1,9,1,2),ncol=4)
## define indices where sign is going to be swapped for
## different strata (perturbation)
sign_ind_1 <- c(5,7)
sign_ind_2 <- c(1)
## compute the column-wise index complements for the different strata
## for later use
col_ind_1 <- sign_ind_1 %/% dim(H)[1]
other_col_ind_1 <- setdiff(c(0:(dim(H)[2]-1)),col_ind_1)
other_ind_1 <- rep(other_col_ind_1*dim(H)[1],each=dim(H)[1]) +
rep(seq_len(dim(H)[1]),length(other_col_ind_1))
col_ind_2 <- sign_ind_2 %/% dim(H)[1]
other_col_ind_2 <- setdiff(c(0:(dim(H)[2]-1)),col_ind_2)
other_ind_2 <- rep(other_col_ind_2*dim(H)[1],each=dim(H)[1]) +
rep(seq_len(dim(H)[1]),length(other_col_ind_2))
## alter the matrix H to yield a new mutational catalogue for
## every stratum (perturbation)
H_1 <- H
H_2 <- H
H_1[sign_ind_1] <- (-1)*H[sign_ind_1]
H_2[sign_ind_2] <- (-1)*H[sign_ind_2]
H_1_df <- as.data.frame(H_1)
H_2_df <- as.data.frame(H_2)
V_1 <- W %*% H_1 # matrix multiplication
V_2 <- W %*% H_2 # matrix multiplication
V <- V_1 + V_2
V_1_df <- as.data.frame(V_1) # mutational catalog of stratum 1
V_2_df <- as.data.frame(V_2) # mutational catalog of stratum 2
V_df <- as.data.frame(V) # mutational catalog of the whole cohort
V_list <- list() # make list of data frames
V_list[[1]] <- V_1_df
V_list[[2]] <- V_2_df
## apply function to be tested
exposures_strata_list <- YAPSA:::LCD_SMC(V_list,W_df)
## compare
simple_exposures_all_df <- YAPSA:::LCD(V_df,W_df)
simple_exposures_1_df <- YAPSA:::LCD(V_1_df,W_df)
simple_exposures_1 <- as.matrix(simple_exposures_1_df)
simple_exposures_2_df <- YAPSA:::LCD(V_2_df,W_df)
simple_exposures_2 <- as.matrix(simple_exposures_2_df)
## check if the overall decomposition is equal to the result of
## the normal LCD
expect_that(exposures_strata_list$exposures_all_df,
is_identical_to(simple_exposures_all_df))
## check if the sum of the exposures of the strata equals
## the result of the normal LCD
expect_equal(exposures_strata_list$sub_exposures_list[[1]] +
exposures_strata_list$sub_exposures_list[[2]],
simple_exposures_all_df)
## check if the positions not affected by the perturbation remain the same
# comp_exposures_1_df <- exposures_strata_list$sub_exposures_list[[1]]
# comp_exposures_1_sub_df <- comp_exposures_1_df[,other_col_ind_2+1]
# simple_exposures_1_sub_df <- simple_exposures_1_df[,other_col_ind_2+1]
# expect_lt(max(abs(comp_exposures_1_sub_df -
# simple_exposures_1_sub_df)),1e-05)
# comp_exposures_2_df <- exposures_strata_list$sub_exposures_list[[2]]
# comp_exposures_2_sub_df <- comp_exposures_2_df[,other_col_ind_1+1]
# simple_exposures_2_sub_df <- simple_exposures_2_df[,other_col_ind_1+1]
# expect_lt(max(abs(comp_exposures_2_sub_df -
# simple_exposures_2_sub_df)),1e-05)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.