Nothing
#' Obtains logistic fits for presence/absence and fitted probabilities of a zero occurring.
#'
#' This function is used to derive weights for feature-wise compositional estimates. Our (default)
#' intention is to derive these based on average occurrences across the dataset, as just a function
#' of sample depth, and not with particular relevance to groups.
#' @param mat count matrix
#' @param hdesign design matrix for the logistic; the default is usually sufficient.
#' @param pres.abs.mod TRUE if glm regression is for presence or absence. FALSE if glm regression is for counts.
#' @param thresh TRUE if numerically one/zero probability occurrences must be thresholded
#' @param thresh.val if thresh is true, the numerically one/zero probability occurrences is thresholded
#' to this value
#' @param ... other parameters
#' @import matrixStats
#' @import stats
#' @return A list with components:
#' \itemize{
#' \item{pi0.fit - list with feature-wise glm.fit objects}
#' \item{pi0 - matrix with fitted probabilities}
#' }
#'
.getHurdle <- function(mat, hdesign=model.matrix( ~-1+log(colSums(mat)) ),
pres.abs.mod=TRUE,
thresh=FALSE, thresh.val=1e-8, ... ){
n <- ncol(mat)
if(pres.abs.mod){
pi0.fit <- apply(mat, 1, function(x) glm.fit( hdesign, c(1*(x==0)), family=binomial() ) )
pi0 <- t( vapply( pi0.fit, function(x) x$fitted.values, FUN.VALUE = numeric(n) ) )
} else {
tau <- colSums(mat)
pi0.fit <- apply(mat, 1, function(x) glm.fit( hdesign, cbind( tau-x, x ), family=binomial() ) )
pi0 <- t( vapply( pi0.fit, function(x) exp(tau*log(x$fitted.values)), FUN.VALUE = numeric(n) ) )
}
if(thresh){
pi0[pi0>1-thresh.val] <- 1-thresh.val
pi0[pi0<thresh.val] <- thresh.val
}
list("pi0.fit"=pi0.fit, "pi0"=pi0)
}
#' Obtain variances of logged counts.
#'
#'@param mat count matrix; rows are features and columns are samples.
#'@param design model matrix for the count matrix
#'@param plot if the mean-variance trend function (the same as that of voom) needs to be plot.
#'@param ebs2 if regularization of variances needs to be performed.
#'@param smoothed TRUE if all the variance estimates must be based on the mean-variance trend function.
#'@param ... other parameters
#'@import matrixStats
#'@import locfit
#'@import limma
#'@import stats
#'@import graphics
#'@return a vector with variance estimates for logged feature-wise counts.
#'
.gets2 <- function(mat, design=model.matrix(mat[1,]~1), plot=FALSE, ebs2=TRUE, smoothed=FALSE, ...){
p <- nrow(mat)
nzrows <- rowSums(mat)>0
mat <- mat[nzrows,]
tjs <- colSums(mat)
tjs <- tjs/exp(mean(log(tjs)))
design <- cbind( design, log(tjs) )
mat <- log(mat)
mat[!is.finite(mat)] <- NA
fit <- lmFit( mat, design )
s <- fit$sigma
s[s==0] <- NA
mu <- rowMeans( mat, na.rm=TRUE )
sqrt.s <- sqrt(s)
l <- locfit(sqrt.s~mu, family="gamma")
if(plot){
plot( mu, sqrt.s, pch=16, cex=.25 )
lines(l, col='red')
}
k <- predict(l, mu)^4
if(smoothed){
s2 <- k
} else {
s2 <- s^2
s2[is.na(s2)] <- k[is.na(s2)]
if(ebs2){
s2 <- limma::squeezeVar(s2, df = max(c(1, fit$df.residual), na.rm=TRUE) )$var.post
}
}
s2.tmp <- c(matrix(NA, nrow=p, ncol=1))
s2.tmp[nzrows] <- s2
s2.tmp
}
#' Marginal weight computations for wrench estimators.
#' @param res result structure of \code{wrench}
#' @param z.adj TRUE if the result structure was generated with \code{wrench} with \code{z.adj} set to TRUE.
#' @param ... other parameters
#' @return inverse marginal variances for robust mean computing
.getMargWeights <- function( res, z.adj, ... ){
with(res$others, {
s2theta <- design %*% s2thetag
tmp <- exp( sweep( replicate( nrow(design), s2 ), 2, s2theta, "+" ))-1
if(!z.adj){
W<-1/( (1-pi0)*( pi0 + tmp ) )
W[!is.finite(W)] <- NA
} else {
W<-(1-pi0)/(pi0+ tmp)
}
colnames(W) <- colnames(res$others$r)
W
})
}
#' Postive-conditional weight computations for wrench estimators.
#' @param res result structure of \code{wrench}
#' @return positive conditional weights for each sample
.getCondWeights <- function( res ) {
with(res$others, {
radj[radj==0] <- NA
(1-pi0)/(( pi0 + replicate( nrow(design), exp(s2) ) -1 )*(radj^2))
})
}
#' Log Postive-conditional weight computations for wrench estimators.
#' @param res result structure of \code{wrench}
#' @return inverse variance weights when using positive conditional models.
.getCondLogWeights <- function( res ) {
with(res$others, {
radj[radj==0] <- NA
(1-pi0)/(( pi0 + replicate( nrow(design), exp(s2) ) -1 ))
})
}
#' Get weighted means for matrix
#' @param mat input matrix
#' @param w weights
#' @import matrixStats
#' @import limma
#' @return column-wise weighted means.
.getWeightedMean <- function( mat, w=rep(1, nrow(mat)) ){
if( is.vector(w) ){
w <- c(w)
res <- colWeightedMeans( mat, w )
} else {
res <- vapply( seq(ncol(mat)), function(j){
yj <- mat[,j]
wj <- w[,j]
indx <- which( is.finite(yj) & (!is.na(wj)) )
yj <- yj[indx]
wj <- wj[indx]
weighted.mean( yj, wj, na.rm=TRUE )
}, FUN.VALUE = numeric(1) )
}
return(res)
}
#' Get weighted median for matrix
#' @param mat input matrix
#' @param w weights
#' @import matrixStats
#' @import limma
#' @return column-wise weighted means.
.getWeightedMedian <- function( mat, w=rep(1, nrow(mat)) ){
if( is.vector(w) ){
w <- c(w)
res <- colWeightedMedians( mat, w )
} else {
res <- vapply( seq(ncol(mat)), function(j){
yj <- mat[,j]
wj <- w[,j]
indx <- which( is.finite(yj) & (!is.na(wj)) )
yj <- yj[indx]
wj <- wj[indx]
weighted.median( yj, wj, na.rm=TRUE )
}, FUN.VALUE = numeric(1) )
}
return(res)
}
#' Obtain robust means. .
#' @param res result structure of \code{wrench}
#' @param estim.type estimator type
#' @param ... other parameters
#' @import matrixStats
#' @return a chosen summary statistic
.estimSummary <- function( res, estim.type="s2.w.mean", ... ){
if(estim.type=="s2.w.mean"){ #weights based on s2
with(res$others, colWeightedMeans( radj, 1/s2 ))
} else if( estim.type=="gs.mean" ){ #this performs well for real-life data
with(res$others,{
y <- apply( radj, 2, function(x) exp((1/length(x))*sum( log( x[x>0] ) )) )
y/exp(mean(log(y)))
})
} else if(estim.type=="mean"){
with(res$others,{
colMeans(radj)/exp(mean(log(colMeans(radj))))
})
} else if( estim.type=="median" ) {
with(res$others, colMedians(radj)/exp(mean(log(colMedians(radj))))
)
} else if( estim.type=="w.marg.median" ){
W <- .getMargWeights( res, ... )
.getWeightedMedian( res$others$radj, W )
} else if (estim.type=="w.marg.mean"){
W <- .getMargWeights( res, ... )
.getWeightedMean( res$others$radj, W )
}else if( estim.type=="w.cond.median" ){
W <- .getCondWeights( res )
.getWeightedMedian( res$others$radj, W )
} else if( estim.type=="w.cond.mean"){
W <- .getCondWeights( res )
.getWeightedMean( res$others$radj, W )
} else if( estim.type=="w.cond.log.median" ){
W <- .getCondLogWeights( res )
exp( .getWeightedMedian( res$others$radj, W ) )
} else if( estim.type=="w.cond.log.mean"){
W <- .getCondLogWeights( res )
exp( .getWeightedMean( res$others$radj, W ) )
} else if( estim.type=="hurdle.w.mean" ){
W <- 1/(1-res$others$pi0)
.getWeightedMean( res$others$radj, W )
}
}
#' This function generates the reference.
#' @import matrixStats
#' @param mat count matrix; rows are features and columns are samples
#' @param ref.est reference estimate method
#' @param ... other parameters
#' @return the reference to be used for normalization
#' @import stats
#' @import graphics
.getReference <- function( mat, ref.est="sw.means", ... ){
tots <- colSums(mat)
if(ref.est=="logistic"){
qref <- 1-plogis(
apply( mat, 1, function(x){
glm( cbind(tots-x, x)~1, family=binomial() )$coefficients
} )
)
} else if(ref.est == "sw.means"){ #sample-wise means
qmat <- sweep(mat, 2, colSums(mat), "/")
qref <- rowMeans(qmat)
} else {
stop("Unknown reference type.")
}
qref
}
#'@import stats
#'@import graphics
.detrend.ccf <- function(ccf, tau, grp, plt.detrends.all=FALSE){
logccf <- log(ccf)
logtau <- log(tau)
grp <- as.factor(grp)
df <- data.frame("logccf"=logccf, "grp"=grp, "logtau"=logtau)
for( g in levels(df$grp) ){ #fit lm and remove trend
g.indcs <- which(df$grp==g)
g.sub <- df[g.indcs, ]
g.fit <- lm( logccf ~ logtau, data=g.sub )
pred.values <- predict( g.fit )
if(plt.detrends.all){
plot( g.sub$logccf ~ g.sub$logtau, col = "black" )
points( pred.values ~ g.sub$logtau, col = "red", pch=19 )
}
max.tau.indx <- which.max( g.sub$logtau )
g.sub$logccf <- g.sub$logccf + ( pred.values[max.tau.indx] - pred.values )
df$logccf[g.indcs] <- g.sub$logccf
}
ccfs.detr <- exp(df$logccf)
res <- list()
res$ccf.detr.un <- ccfs.detr
res$ccf.detr <- ccfs.detr / exp( mean(log(ccfs.detr)) )
res
}
#' @title Normalization for sparse, under-sampled count data.
#'
#' @description Obtain normalization factors for sparse, under-sampled count data that often arise with
#' metagenomic count data.
#'
#' @param mat count matrix; rows are features and columns are samples
#' @param condition a vector with group information on the samples
#' @param etype weighting strategy with the following options:
#' \itemize{
#' \item{ hurdle.w.mean, the W1 estimator in manuscript.}
#' \item{ w.marg.mean, the W2 estimator in manuscript. These are appropriately computed depending on
#' whether \code{z.adj}=TRUE (see below)
#' }
#' \item{s2.w.mean, weight by inverse of feature-variances of logged count data. }
#' }
#' @param ebcf TRUE if empirical bayes regularization of ratios needs to be performed. Default recommended.
#' @param z.adj TRUE if the feature-wise ratios need to be adjusted
#' by hurdle probabilities (arises when taking marginal expectation). Default recommended.
#' @param phi.adj TRUE if estimates need to be adjusted for variance terms
#' (arises when considering positive-part expectations). Default recommended.
#' @param detrend FALSE if any linear dependence between sample-depth and compositional factors needs to be removed.
#' (setting this to TRUE reduces variation in compositional factors and can improve accuracy, but requires an extra assumption that no linear dependence between compositional factors and sample depth is present in samples).
#' @param ... other parameters
#' @import matrixStats
#' @import stats
#' @return a \code{list} with components:
#' \itemize{
#' \item{ \code{nf}, \emph{normalization factors} for samples passed.
#' Samples with zero total counts are removed from output. }
#' \item{ \code{ccf}, \emph{compositional correction factors}.
#' Samples with zero total counts are removed from output.
#' }
#' \item{ \code{others}, a \code{list} with results from intermediate computations. }
#' \itemize{
#' \item{ \code{qref}, reference chosen. }
#' \item{ \code{design}, design matrix used for computation of positive-part parameters. }
#' \item{ \code{s2}, feature-wise variances of logged count data. }
#' \item{ \code{r}, (regularized) ratios of feature-wise proportions. }
#' \item{ \code{radj}, adjustments made to the regularized ratios based
#' on z.adj and phi.adj settings.}
#' }
#' }
#' @examples
#' #Obtain counts matrix and some group information
#' require(metagenomeSeq)
#' data(mouseData)
#' cntsMatrix <- MRcounts(mouseData)
#' group <- pData(mouseData)$diet
#' #Running wrench with defaults
#' W <- wrench( cntsMatrix, condition=group )
#' compositionalFactors <- W$ccf
#' normalizationFactors <- W$nf
#'
#'#Introducing the above normalization factors for the most
#'# commonly used tools is shown below.
#'
#' #If using metagenomeSeq
#' normalizedObject <- mouseData
#' normFactors(normalizedObject) <- normalizationFactors
#'
#' #If using edgeR, we must pass in the compositional factors
#'require(edgeR)
#'edgerobj <- DGEList( counts=cntsMatrix,
#' group = as.matrix(group),
#' norm.factors=compositionalFactors )
#'
#' #If using DESeq/DESeq2
#'require(DESeq2)
#'deseq.obj <- DESeqDataSetFromMatrix(countData = cntsMatrix,
#' DataFrame(group),
#' ~ group )
#'DESeq2::sizeFactors(deseq.obj) <- normalizationFactors
#' @author M. Senthil Kumar
#' @export
wrench <- function( mat, condition, etype="w.marg.mean",
ebcf=TRUE, z.adj=FALSE, phi.adj=TRUE, detrend=FALSE, ... ){
#trim
mat <- mat[rowSums(mat)>0,]
nzcols <- colSums(mat)>0
mat <- mat[,nzcols]
condition <- condition[nzcols]
#feature-wise parameters: hurdle, variance, reference and raw ratios
n <- ncol(mat)
p <- nrow(mat)
tots <- colSums(mat)
compute.pi0 <- !((etype %in% c("mean", "median", "s2.w.mean")) & !z.adj )
if(compute.pi0){
pi0 <- .getHurdle( mat, ... )$pi0
}
group <- as.character(condition)
if(length(unique(group)) == 1){
design <- model.matrix(mat[1,]~1)
} else {
design <- model.matrix(~-1+group)
}
s2 <- .gets2(mat,design,...)
#refernece
qref <- .getReference( mat, ... )
#sample-wise ratios
qmat <- sweep(mat, 2, colSums(mat), "/")
r <- qmat/qref
if(ebcf){
#group-wise ratios
Yg <- vapply( unique(group), function(g){
g_indx <- which(group==g)
ng <- sum(group==g)
if(ng>1){
rowSums(mat[,g_indx])
} else {
mat[,g_indx]
}
}, FUN.VALUE=numeric(p) )
qg <- sweep(Yg, 2, colSums(Yg), "/") #weighted estimator
rg <- qg/qref
lrg <- log(rg)
lrg[!is.finite(lrg)] <- NA
s2thetag <- colVars(lrg, na.rm=TRUE)
s2thetag_rep <- design %*% s2thetag
thetag <- colMeans(rg)
thetag_rep <- c(design %*% thetag)
#regularized estimation of positive means.
r <- sweep(r, 2, thetag_rep, "/")
thetagj <- exp( vapply(seq(n), function(j){
x <- log(r[,j])
x[!is.finite(x)] <- NA
weighted.mean( x, w=1/(s2+s2thetag_rep[j]), na.rm=TRUE )
}, FUN.VALUE = numeric(1)))
thetagi <- t( vapply(seq(p), function(i){
exp(
(s2thetag_rep/(s2[i]+s2thetag_rep))*( log(r[i,]) - log(thetagj) )
)
}, FUN.VALUE = numeric(n)) )
r <- sweep( thetagi, 2, thetagj*thetag_rep, "*")
}
#adjustments for marginal, and truncated means.
phi2 <- exp(s2)
radj <- r
if(z.adj){
radj <- radj/(1-pi0)
}
if(phi.adj){
radj <- sweep( radj, 1, sqrt(phi2), "/" )
}
#return result structure
res <- list()
res$others <- list()
if(ebcf){
res$others <- list( "rg" = rg,
"thetag" = thetag,
"thetagi" = thetagi,
"s2thetag" = s2thetag
)
}
res$others <- c(
res$others,
list(
"qref"=qref,
"design" = design,
"s2" = s2,
"r" = r,
"radj" = radj)
)
if(compute.pi0){
res$others <- c(res$others, list("pi0"=pi0))
}
res$ccf <- .estimSummary( res, estim.type = etype, z.adj=z.adj, ... )
res$ccf <- with(res, ccf/exp(mean(log(ccf))))
if( detrend ){
res$others$ccf0 <- res$ccf
detrended <- .detrend.ccf( res$ccf, tots, condition )
res$others$ccf.detr.un <- detrended$ccf.detr.un
res$ccf <- detrended$ccf.detr
}
tjs <- colSums(mat)/exp(mean(log(colSums(mat))))
names(res$ccf) <- names(tjs)
res$nf <- res$ccf * tjs
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.