Nothing
# @title .onAttach
# @description Load required data into gloval enviroment
# @keywords internal
.onAttach <- function (libname, pkgname){
if (!interactive() || stats::runif(1) > 0.1) return()
welcome.message <- paste0(
" =============================================================\n",
" ______ ___ ____ ___ \n",
" || | | | | | o __ | o _ __ \n",
" || | | ___ |___| |__ | | | | | | | | |_/ |__ \n",
" || |___ |____| | | |__| | |__| |__ | | |_| | \\ __| \n",
" ------------------------------------------------------------\n",
" Query, download & analyze - GDC \n",
" Version:",utils::packageVersion("TCGAbiolinks"),"\n",
" ==============================================================\n"
)
packageStartupMessage(welcome.message)
}
#' @title Check GDC server status is OK
#' @description
#' Check GDC server status using the api
#' https://api.gdc.cancer.gov/status
#' @export
#' @importFrom jsonlite fromJSON
#' @examples
#' status <- isServeOK()
#' @return Return true if status is ok
isServeOK <- function(){
tryCatch({
status <- getGDCInfo()$status
if(status != "OK") stop("GDC server down, try to use this package later")
},error = function(e) stop("GDC server down, try to use this package later"))
return(TRUE)
}
#' @title Check GDC server status
#' @description
#' Check GDC server status using the api
#' https://api.gdc.cancer.gov/status
#' @export
#' @importFrom jsonlite fromJSON
#' @examples
#' info <- getGDCInfo()
#' @return Return true all status
getGDCInfo <- function(){
status <- fromJSON("https://api.gdc.cancer.gov/status",simplifyDataFrame = TRUE)
return(status)
}
checkProjectInput <- function(project){
projects <- getGDCprojects()
if(missing(project)) {
print(knitr::kable(projects[,c(7,9)]))
stop("Please set a project argument from the column id above")
}
for(proj in project)
if(!(proj %in% projects$project_id)) {
print(knitr::kable(projects[,c(7,9)]))
stop("Please set a valid project argument from the column id above. Project ", proj, " was not found.")
}
}
checkLegacyPlatform <- function(project,data.category, legacy = FALSE){
project.summary <- getProjectSummary(project, legacy)
if(missing(data.category)) {
print(knitr::kable(project.summary$data_categories))
stop("Please set a data.category argument from the column data_category above")
}
if(!(data.category %in% project.summary$data_categories$data_category)) {
print(knitr::kable(project.summary$data_categories))
stop("Please set a valid data.category argument from the column data_category above")
}
}
checkDataTypeInput <- function(legacy, data.type){
if(legacy){
legacy.data.type <- c("Copy number segmentation",
"Raw intensities",
"Aligned reads",
"Copy number estimate",
"Simple nucleotide variation",
"Gene expression quantification",
"Coverage WIG",
"miRNA gene quantification",
"Genotypes",
"miRNA isoform quantification",
"Normalized copy numbers",
"Isoform expression quantification",
"Normalized intensities",
"Tissue slide image",
"Exon quantification",
"Exon junction quantification",
"Methylation beta value",
"Unaligned reads",
"Diagnostic image",
"CGH array QC",
"Biospecimen Supplement",
"Pathology report",
"Clinical Supplement",
"Intensities",
"Protein expression quantification",
"Microsatellite instability",
"Structural variation",
"Auxiliary test",
"Copy number QC metrics",
"Intensities Log2Ratio",
"Methylation array QC metrics",
"Clinical data",
"Copy number variation",
"ABI sequence trace",
"Biospecimen data",
"Simple somatic mutation",
"Bisulfite sequence alignment",
"Methylation percentage",
"Sequencing tag",
"Sequencing tag counts",
"LOH")
if(!data.type %in% legacy.data.type) {
print(knitr::kable(as.data.frame(sort(legacy.data.type))))
stop("Please set a data.type argument from the column legacy.data.type above")
}
} else {
harmonized.data.type <- c(
"Aggregated Somatic Mutation",
"Gene Expression Quantification",
"Raw CGI Variant",
"Methylation Beta Value",
"Splice Junction Quantification",
"Annotated Somatic Mutation",
"Raw Simple Somatic Mutation",
"Masked Somatic Mutation",
"Copy Number Segment",
"Allele-specific Copy Number Segment",
"Masked Copy Number Segment",
"Isoform Expression Quantification",
"miRNA Expression Quantification",
"Biospecimen Supplement",
"Gene Level Copy Number Scores",
"Clinical Supplement",
"Masked Somatic Mutation",
"Slide Image")
if(!data.type %in% harmonized.data.type) {
print(knitr::kable(as.data.frame(sort(harmonized.data.type))))
stop("Please set a data.type argument from the column harmonized.data.type above")
}
}
}
checkDataCategoriesInput <- function(project,data.category, legacy = FALSE){
for(proj in project){
project.summary <- getProjectSummary(proj, legacy)
if(missing(data.category)) {
print(knitr::kable(project.summary$data_categories))
stop("Please set a data.category argument from the column data_category above")
}
if(!(data.category %in% project.summary$data_categories$data_category)) {
print(knitr::kable(project.summary$data_categories))
stop("Please set a valid data.category argument from the column data_category above. We could not validade the data.category for project ", proj)
}
}
}
checkBarcodeDefinition <- function(definition){
for(i in definition){
if(!(i %in% getBarcodeDefinition()$tissue.definition)){
print(knitr::kable(getBarcodeDefinition()))
stop(i, " was not found. Please select a difinition from the table above ")
}
}
}
#' @title Retrieve all GDC projects
#' @description
#' getGDCprojects uses the following api to get projects
#' https://api.gdc.cancer.gov/projects
#' @export
#' @import readr stringr
#' @examples
#' projects <- getGDCprojects()
#' @return A data frame with last GDC projects
getGDCprojects <- function(){
url <- "https://api.gdc.cancer.gov/projects?size=1000&format=json"
json <- fromJSON(content(GET(url), as = "text", encoding = "UTF-8"), simplifyDataFrame = TRUE)
projects <- json$data$hits
projects$tumor <- unlist(lapply(projects$project_id, function(x){unlist(str_split(x,"-"))[2]}))
if(nrow(projects) == 0) stop("I couldn't access GDC API. Please, check if it is not down.")
return(projects)
}
# Source: https://stackoverflow.com/questions/10266963/moving-files-between-folders
move <- function(from, to, keep.copy = FALSE) {
if(file.exists(from)){
if(R.utils::isDirectory(from)) {
todir <- dirname(to)
dir.create(to, recursive=TRUE,showWarnings = FALSE)
tryCatch(file.copy(from = from, to = todir, recursive = TRUE), warning = function(w) print(w),error = function(e) print(e))
} else {
todir <- dirname(to)
dir.create(todir, recursive=TRUE,showWarnings = FALSE)
tryCatch(file.copy(from = from, to = to), warning = function(w) print(w),error = function(e) print(e))
}
if(!keep.copy){
if(dirname(from) != ".") {
unlink(dirname(from),recursive=TRUE,force = TRUE)
} else {
unlink(from, recursive = R.utils::isDirectory(from))
}
}
} else {
stop(paste0("I could not find the file: ", from))
}
}
.quantileNormalization <-
function(wd, distribution) {
n <- nrow(wd)
m <- ncol(wd)
if(!missing(distribution))
if(m != length(distribution))
stop("The reference distribution has length
different from the col dimension of the data matrix.") else
distribution <- sort(distribution)
o <- matrix(0, n, m)
for(i in 1:n)
o[i,] <- order(wd[i,])
j <- 1
tmp <- rep(0, n)
while(j <= m) {
if(missing(distribution)) {
for(i in 1:n)
tmp[i] <- wd[i,o[i,j]]
value <- mean(tmp)
} else value <- distribution[j]
for(i in 1:n)
wd[i,o[i,j]] <- value
j <- j + 1
}
return(wd)
}
is.windows <- function() {
Sys.info()["sysname"] == "Windows"
}
is.mac <- function() {
Sys.info()["sysname"] == "Darwin"
}
is.linux <- function() {
Sys.info()["sysname"] == "Linux"
}
#
# ggbiplot.r
#
# Copyright 2011 Vincent Q. Vu.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
#' Biplot for Principal Components using ggplot2
#'
#' @param pcobj an object returned by prcomp() or princomp()
#' @param choices which PCs to plot
#' @param scale covariance biplot (scale = 1), form biplot (scale = 0).
#' When scale = 1, the inner product between the variables
#' approximates the covariance and the distance between
#' the points approximates the Mahalanobis distance.
#' @param obs.scale scale factor to apply to observations
#' @param var.scale scale factor to apply to variables
#' @param pc.biplot for compatibility with biplot.princomp()
#' @param groups optional factor variable indicating the groups that
#' the observations belong to. If provided the points
#' will be colored according to groups
#' @param ellipse draw a normal data ellipse for each group?
#' @param ellipse.prob size of the ellipse in Normal probability
#' @param labels optional vector of labels for the observations
#' @param labels.size size of the text used for the labels
#' @param alpha alpha transparency value for the points
#' (0 = transparent, 1 = opaque)
#' @param circle draw a correlation circle?
#' (only applies when prcomp was called with scale = TRUE
#' and when var.scale = 1)
#' @param circle.prob definition of circle.prob
#' @param var.axes draw arrows for the variables?
#' @param varname.size size of the text for variable names
#' @param varname.adjust adjustment factor the placement of the variable names,
#' >= 1 means farther from the arrow
#' @param varname.abbrev whether or not to abbreviate the variable names
#' @import ggplot2
#' @importFrom plyr ddply
#' @import stats
#' @keywords internal
#' @return A ggplot2 plot
#' @author Vincent Q. Vu.
# @examples
# data(iris)
# iris.pca <- prcomp(iris[,1:4], scale. = TRUE)
# print(ggbiplot(iris.pca, obs.scale = 1, var.scale = 1, groups = iris[,5],
# ellipse = TRUE, circle = TRUE))
ggbiplot <- function(pcobj, choices = 1:2, scale = 1, pc.biplot = TRUE,
obs.scale = 1 - scale, var.scale = scale,
groups = NULL, ellipse = FALSE, ellipse.prob = 0.68,
labels = NULL, labels.size = 3, alpha = 1,
var.axes = TRUE,
circle = FALSE, circle.prob = 0.69,
varname.size = 3, varname.adjust = 1.5,
varname.abbrev = FALSE)
{
xvar <- NULL
yvar <- NULL
varname <- NULL
angle <- NULL
hjust <- NULL
stopifnot(length(choices) == 2)
check_package("scales")
# Recover the SVD
if(inherits(pcobj, 'prcomp')){
nobs.factor <- sqrt(nrow(pcobj$x) - 1)
d <- pcobj$sdev
u <- sweep(pcobj$x, 2, 1 / (d * nobs.factor), FUN = '*')
v <- pcobj$rotation
} else if(inherits(pcobj, 'princomp')) {
nobs.factor <- sqrt(pcobj$n.obs)
d <- pcobj$sdev
u <- sweep(pcobj$scores, 2, 1 / (d * nobs.factor), FUN = '*')
v <- pcobj$loadings
} else if(inherits(pcobj, 'PCA')) {
nobs.factor <- sqrt(nrow(pcobj$call$X))
d <- unlist(sqrt(pcobj$eig)[1])
u <- sweep(pcobj$ind$coord, 2, 1 / (d * nobs.factor), FUN = '*')
v <- sweep(pcobj$var$coord,2,sqrt(pcobj$eig[1:ncol(pcobj$var$coord),1]),FUN="/")
} else if(inherits(pcobj, "lda")) {
nobs.factor <- sqrt(pcobj$N)
d <- pcobj$svd
u <- predict(pcobj)$x/nobs.factor
v <- pcobj$scaling
d.total <- sum(d^2)
} else {
stop('Expected a object of class prcomp, princomp, PCA, or lda')
}
# Scores
choices <- pmin(choices, ncol(u))
df.u <- as.data.frame(sweep(u[,choices], 2, d[choices]^obs.scale, FUN='*'))
# Directions
v <- sweep(v, 2, d^var.scale, FUN='*')
df.v <- as.data.frame(v[, choices])
names(df.u) <- c('xvar', 'yvar')
names(df.v) <- names(df.u)
if(pc.biplot) {
df.u <- df.u * nobs.factor
}
# Scale the radius of the correlation circle so that it corresponds to
# a data ellipse for the standardized PC scores
r <- sqrt(qchisq(circle.prob, df = 2)) * prod(colMeans(df.u^2))^(1/4)
# Scale directions
v.scale <- rowSums(v^2)
df.v <- r * df.v / sqrt(max(v.scale))
# Change the labels for the axes
if(obs.scale == 0) {
u.axis.labs <- paste('standardized PC', choices, sep='')
} else {
u.axis.labs <- paste('PC', choices, sep='')
}
# Append the proportion of explained variance to the axis labels
u.axis.labs <- paste(u.axis.labs,
sprintf('(%0.1f%% explained var.)',
100 * pcobj$sdev[choices]^2/sum(pcobj$sdev^2)))
# Score Labels
if(!is.null(labels)) {
df.u$labels <- labels
}
# Grouping variable
if(!is.null(groups)) {
df.u$groups <- groups
}
# Variable Names
if(varname.abbrev) {
df.v$varname <- abbreviate(rownames(v))
} else {
df.v$varname <- rownames(v)
}
# Variables for text label placement
df.v$angle <- with(df.v, (180/pi) * atan(yvar / xvar))
df.v$hjust = with(df.v, (1 - varname.adjust * sign(xvar)) / 2)
# Base plot
g <- ggplot(data = df.u, aes(x = xvar, y = yvar)) +
xlab(u.axis.labs[1]) + ylab(u.axis.labs[2]) + coord_equal()
if(var.axes) {
# Draw circle
if(circle)
{
theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
circle <- data.frame(xvar = r * cos(theta), yvar = r * sin(theta))
g <- g + geom_path(data = circle, color = scales::muted('white'),
size = 1/2, alpha = 1/3)
}
# Draw directions
g <- g +
geom_segment(data = df.v,
aes(x = 0, y = 0, xend = xvar, yend = yvar),
arrow = arrow(length = unit(1/2, 'picas')),
color = scales::muted('red'))
}
# Draw either labels or points
if(!is.null(df.u$labels)) {
if(!is.null(df.u$groups)) {
g <- g + geom_text(aes(label = labels, color = groups),
size = labels.size)
} else {
g <- g + geom_text(aes(label = labels), size = labels.size)
}
} else {
if(!is.null(df.u$groups)) {
g <- g + geom_point(aes(color = groups), alpha = alpha)
} else {
g <- g + geom_point(alpha = alpha)
}
}
# Overlay a concentration ellipse if there are groups
if(!is.null(df.u$groups) && ellipse) {
theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
circle <- cbind(cos(theta), sin(theta))
ell <- ddply(df.u, 'groups', function(x) {
if(nrow(x) <= 2) {
return(NULL)
}
sigma <- var(cbind(x$xvar, x$yvar))
mu <- c(mean(x$xvar), mean(x$yvar))
ed <- sqrt(qchisq(ellipse.prob, df = 2))
data.frame(sweep(circle %*% chol(sigma) * ed, 2, mu, FUN = '+'),
groups = x$groups[1])
})
names(ell)[1:2] <- c('xvar', 'yvar')
g <- g + geom_path(data = ell, aes(color = groups, group = groups))
}
# Label the variable axes
if(var.axes) {
g <- g +
geom_text(data = df.v,
aes(label = varname, x = xvar, y = yvar,
angle = angle, hjust = hjust),
color = 'darkred', size = varname.size)
}
# Change the name of the legend for groups
# if(!is.null(groups)) {
# g <- g + scale_color_brewer(name = deparse(substitute(groups)),
# palette = 'Dark2')
# }
# TODO: Add a second set of axes
return(g)
}
#' @title GenesCutID
#' @description
#' GenesCutID
#' @param GeneList GeneList
#' @return list of gene symbol without IDs
# @examples
# GenesCutID(c("CRKL|1399","TADA2A|6871","KRT76|51350"))
#' @keywords internal
GenesCutID <- function(GeneList){
GeneListCutID <- as.matrix(matrix(unlist(strsplit(as.character(GeneList),
"|",fixed = TRUE)),length(GeneList),2,byrow = TRUE))[,1]
return(as.matrix(GeneListCutID))
}
#' @title GeneSplitRegulon
#' @description
#' GeneSplitRegulon
#' @param Genelist Genelist
#' @param Sep Sep
#' @keywords internal
#' @return GeneSplitRegulon
# @examples
# GeneSplitRegulon("CRKL;TADA2A;KRT76",Sep =";")
GeneSplitRegulon <- function(Genelist,Sep){
RegSplitted <- as.matrix(unlist(strsplit(as.character(Genelist), Sep)))
return(RegSplitted)
}
#' @title Download GISTIC data from firehose
#' @description
#' Download GISTIC data from firehose from
#' http://gdac.broadinstitute.org/runs/analyses__latest/data/
#' @param disease TCGA disease. Option available in
#' http://gdac.broadinstitute.org/runs/analyses__latest/data/
#' @param type Results type: thresholded or data
#' @export
getGistic <- function(disease, type = "thresholded") {
if(type == "thresholded") {
file.type <- "all_thresholded.by_genes.txt"
} else {
file.type <- "all_data_by_genes.txt"
}
base <- paste0("http://gdac.broadinstitute.org/runs/analyses__latest/data/", disease)
x <- tryCatch({
read_html(base) %>% html_nodes("a") %>% html_attr("href")
}, error = function(e) {
return(NULL)
})
if(is.null(x)) {
message("No GISTIC file found")
return(NULL)
}
base <- file.path(base,tail(x,n=1))
x <- read_html(base) %>% html_nodes("a") %>% html_attr("href")
x <- x[grep("CopyNumber_Gistic2.Level_4",x)]
if(!file.exists(x[1])) {
if(Sys.info()["sysname"] == "Windows") mode <- "wb" else mode <- "w"
downloader::download(file.path(base,x[1]),x[1], mode = mode)
}
# Check if download was not corrupted
md5 <- readr::read_table(
file.path(base,x[2]),
col_names = FALSE,
progress = FALSE,
col_types = "cc")$X1
if(tools::md5sum(x[1]) != md5) stop("Error while downloading CNV data")
file <- paste0(gsub(".tar.gz","",x[1]),"/",file.type)
if(!file.exists(file)) {
compressed.files <- untar(x[1], list = TRUE)
compressed.files <- compressed.files[grepl(file.type, compressed.files)]
untar(x[1],files = compressed.files )
}
ret <- tryCatch({
fread(file, data.table = FALSE, colClasses = "character")
}, error = function(e) {
file <- dir(pattern = file.type, recursive = TRUE, full.names = TRUE)
file <- file[grep(disease,file,ignore.case = TRUE)]
fread(file, data.table = FALSE, colClasses = "character")
})
return(ret)
}
get.cnv <- function(project, genes){
if(missing(project)) stop("Argument project is missing")
if(missing(genes)) stop("Argument genes is missing")
gistic <- getGistic(gsub("TCGA-","",project))
cnv.annotation <- t(gistic[tolower(gistic[,1]) %in% tolower(genes),-c(2:3)])
colnames(cnv.annotation) <- paste0("gistic2_hg19_",cnv.annotation[1,])
cnv.annotation <- cnv.annotation[-1,, drop = FALSE]
rownames(cnv.annotation) <- substr(gsub("\\.","-",rownames(cnv.annotation)),1,15)
return(cnv.annotation)
}
get.mutation <- function(project,
genes,
pipeline = pipeline,
mutant_variant_classification = c("Frame_Shift_Del",
"Frame_Shift_Ins",
"Missense_Mutation",
"Nonsense_Mutation",
"Splice_Site",
"In_Frame_Del",
"In_Frame_Ins",
"Translation_Start_Site",
"Nonstop_Mutation")){
if(missing(project)) stop("Argument project is missing")
if(missing(genes)) stop("Argument genes is missing")
# Get mutation annotation file
maf <- GDCquery_Maf(gsub("TCGA-","",project),pipelines = pipeline)
message(paste0("Consindering only the mutant_variant_classification mutations: \n o ",
paste(mutant_variant_classification, collapse = "\n o ")))
# We will select only genes with mutation in the exon
idx <- unique(
unlist(
sapply(
mutant_variant_classification,
function(x) grep(x,maf$Variant_Classification,
ignore.case = TRUE)
)
)
)
maf <- maf[idx,]
mut <- NULL
for(i in genes) {
if(!i %in% maf$Hugo_Symbol) next
aux <- data.frame(patient = substr(unique(maf[i == maf$Hugo_Symbol,]$Tumor_Sample_Barcode),1,15),
mut = TRUE)
colnames(aux)[2] <- paste0("mut_hg38_",i)
if(is.null(mut)) {
mut <- aux
} else {
mut <- merge(mut, aux, by = "patient", all = TRUE)
}
}
if(is.null(mut)) return(NULL)
rownames(mut) <- mut$patient; mut$patient <- NULL
# Lets replaces NA to FALSE
# TRUE: has mutation
# FALSE: has no mutation
mut <- !is.na(mut)
return(mut)
}
get.mut.gistc <- function(project,
genes,
mut.pipeline,
mutant_variant_classification) {
if(missing(project)) stop("Argument project is missing")
if(missing(genes)) stop("Argument genes is missing")
mut <- get.mutation(project,
genes,
pipeline = mut.pipeline,
mutant_variant_classification = mutant_variant_classification )
cnv <- get.cnv(project, genes)
if(!is.null(mut) & !is.null(cnv)) {
annotation <- merge(mut, cnv, by = 0 , sort = FALSE,all=TRUE)
mut.idx <- grep("mut_hg38_",colnames(annotation))
annotation[,mut.idx] <- !is.na(annotation[,mut.idx]) & annotation[,mut.idx] != FALSE
rownames(annotation) <- annotation$Row.names
annotation$Row.names <- NULL
return(annotation)
} else if(!is.null(mut) & is.null(cnv)) {
return(mut)
} else if(is.null(mut) & !is.null(cnv)) {
return(cnv)
}
return(NULL)
}
get.mut.gistc.information <- function(df,
project,
genes,
mut.pipeline = "mutect2",
mutant_variant_classification = c("Frame_Shift_Del",
"Frame_Shift_Ins",
"Missense_Mutation",
"Nonsense_Mutation",
"Splice_Site",
"In_Frame_Del",
"In_Frame_Ins",
"Translation_Start_Site",
"Nonstop_Mutation")) {
order <- rownames(df)
for(i in genes) if(!tolower(i) %in% tolower(EAGenes$Gene)) message(paste("Gene not found:", i))
info <- as.data.frame(get.mut.gistc(project,
genes,
mut.pipeline = mut.pipeline,
mutant_variant_classification = mutant_variant_classification))
if(is.null(info)) return(df)
info$aux <- rownames(info)
df$aux <- substr(df$barcode,1,15)
df <- merge(df,info,by = "aux", all.x = TRUE, sort = FALSE)
df$aux <- NULL
mut.idx <- grep("mut_hg38_",colnames(df))
# NA should be set to FALSE as the sample has no information found
if(length(mut.idx) > 0) {
for(idx in mut.idx) {
df[,idx] <- !is.na(df[,idx]) & df[,idx] != FALSE
}
}
for(i in paste0("mut_hg38_",genes)){
if(!i %in% colnames(df)) {
df$aux <- FALSE
colnames(df)[grep("aux",colnames(df))] <- i
}
}
rownames(df) <- df$barcode
df <- DataFrame(df[order,])
return(df)
}
print.header <- function(text, type ="section"){
message(paste(rep("-",nchar(text) + 3),collapse = ""))
message(paste(ifelse(type=="section","o","oo"),text))
message(paste(rep("-",nchar(text)+ 3),collapse = ""))
}
#' @title Get the results table from query
#' @description
#' Get the results table from query, it can select columns with cols argument
#' and return a number of rows using rows argument.
#' @param query A object from GDCquery
#' @param rows Rows identifiers (row numbers)
#' @param cols Columns identifiers (col names)
#' @export
#' @return Table with query results
#' @examples
#' query <- GDCquery(project = "TCGA-GBM",
#' data.category = "Transcriptome Profiling",
#' data.type = "Gene Expression Quantification",
#' workflow.type = "HTSeq - Counts",
#' barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"))
#' results <- getResults(query)
getResults <- function(query, rows, cols){
if(missing(cols) & missing(rows)) return(query$results[[1]])
if(missing(cols) & !missing(rows)) return(query$results[[1]][rows,])
if(!missing(cols) & missing(rows)) return(query$results[[1]][,cols])
if(!missing(cols) & !missing(rows)) return(query$results[[1]][rows,cols])
}
getURL <- function(URL, FUN, ..., N.TRIES=3L) {
N.TRIES <- as.integer(N.TRIES)
stopifnot(length(N.TRIES) == 1L, !is.na(N.TRIES))
while (N.TRIES > 0L) {
result <- tryCatch(FUN(URL, ...), error=identity)
if (!inherits(result, "error"))
break
N.TRIES <- N.TRIES - 1L
}
if (N.TRIES == 0L) {
stop("'getURL()' failed:",
"\n URL: ", URL,
"\n error: ", conditionMessage(result))
}
result
}
#' @title Extract information from TCGA barcodes.
#' @description
#' get_IDs allows user to extract metadata from barcodes. The dataframe returned has columns for
#' 'project', 'tss','participant', 'sample', "portion", "plate", and "center"
#' @param data numeric matrix, each row represents a gene, each column represents a sample
#' @export
#' @return data frame with columns 'project', 'tss','participant', 'sample', "portion", "plate", "center", "condition"
get_IDs <- function(data) {
IDs <- strsplit(c(colnames(data)), "-")
IDs <- plyr::ldply(IDs, rbind)
colnames(IDs) <- c('project', 'tss','participant', 'sample', "portion", "plate", "center")
cols <- c("project", "tss", "participant")
IDs$patient <- apply(IDs[,cols],1,paste,collapse = "-" )
barcode <- colnames(data)
IDs <- cbind(IDs, barcode)
condition <- gsub("11+[[:alpha:]]", "normal", as.character(IDs$sample))
condition <- gsub("01+[[:alpha:]]", "cancer", condition)
IDs$condition <- condition
IDs$myorder <- 1:nrow(IDs)
return(IDs)
}
#' @title register cores
#' @param package Package name
#' @noRd
check_package <- function(package){
if (!requireNamespace(package, quietly = TRUE)) {
stop(package, " package is needed for this function to work. Please install it.",
call. = FALSE)
}
}
#' @title register cores
#' @param package Package name
#' @noRd
set_cores <- function(cores){
parallel <- FALSE
if (cores > 1) {
check_package("parallel")
check_package("doParallel")
if (is.windows()) {
if (cores > parallel::detectCores())
cores <- parallel::detectCores()
doParallel::registerDoParallel(cores)
parallel = TRUE
} else {
if (cores > parallel::detectCores())
cores <- parallel::detectCores()
doParallel::registerDoParallel(cores)
parallel = TRUE
}
}
return(parallel)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.