Nothing
#!/usr/bin/Rscript
### SIAMCAT - Statistical Inference of Associations between
### Microbial Communities And host phenoTypes R flavor EMBL
### Heidelberg 2012-2018 GNU GPL 3.0
#'@title Check and visualize associations between features and classes
#'
#'@description This function computes different measures of association between
#' features and the label and visualizes the results
#'
#'@usage check.associations(siamcat, fn.plot=NULL, color.scheme = "RdYlBu",
#' alpha =0.05, mult.corr = "fdr", sort.by = "fc",
#' detect.lim = 1e-06, pr.cutoff = 1e-6, max.show = 50,
#' plot.type = "quantile.box",
#' panels = c("fc","auroc"), prompt = TRUE,
#' feature.type = 'filtered', verbose = 1)
#'
#'@param siamcat object of class \link{siamcat-class}
#'
#'@param fn.plot string, filename for the pdf-plot. If \code{fn.plot} is
#' \code{NULL}, the plot will be produced in the active graphics device.
#'
#'@param color.scheme valid R color scheme or vector of valid R colors (must be
#' of the same length as the number of classes), defaults to \code{'RdYlBu'}
#'
#'@param alpha float, significance level, defaults to \code{0.05}
#'
#'@param mult.corr string, multiple hypothesis correction method, see
#' \code{\link[stats]{p.adjust}}, defaults to \code{"fdr"}
#'
#'@param sort.by string, sort features by p-value (\code{"p.val"}), by fold
#' change (\code{"fc"}) or by prevalence shift (\code{"pr.shift"}),
#' defaults to \code{"fc"}
#'
#'@param detect.lim float, pseudocount to be added before log-transformation of
#' the data, defaults to \code{1e-06}. Will be ignored if
#' \code{feature.type} is \code{"normalized"}.
#'
#'@param pr.cutoff float, cutoff for the prevalence computation, defaults to
#' \code{1e-06}
#'
#'@param max.show integer, how many associated features should be shown,
#' defaults to \code{50}
#'
#'@param plot.type string, specify how the abundance should be plotted, must be
#' one of these: \code{c("bean", "box", "quantile.box", "quantile.rect")},
#' defaults to \code{"quantile.box"}
#'
#'@param panels vector, name of the panels to be plotted next to the
#' abundances, possible entries are \code{c("fc", "auroc",
#' "prevalence")}, defaults to \code{c("fc", "auroc")}
#'
#'@param prompt boolean, turn on/off prompting user input when not plotting
#' into a pdf-file, defaults to TRUE
#'
#'@param feature.type string, on which type of features should the function
#' work? Can be either \code{c()"original", "filtered", or "normalized")}.
#' Please only change this paramter if you know what you are doing!
#'
#' If \code{feature.type} is \code{"normalized"}, the normalized abundances
#' will not be log10-transformed.
#'
#' @param verbose integer, control output: \code{0} for no output at all,
#' \code{1} for only information about progress and success, \code{2} for
#' normal level of information and \code{3} for full debug information,
#' defaults to \code{1}
#'
#'@return object of class \link{siamcat-class} with the slot
#' \code{associations} filled
#'
#'@keywords SIAMCAT check.associations
#'
#'@details For each feature, this function calculates different measures of
#' association between the feature and the label. In detail, these
#' associations are: \itemize{
#' \item Significance as computed by a Wilcoxon test followed by multiple
#' hypothesis testing correction.
#' \item AUROC (Area Under the Receiver Operating Characteristics Curve)
#' as a non-parameteric measure of enrichment (corresponds to the effect
#' size of the Wilcoxon test).
#' \item The generalized Fold Change (gFC) is a pseudo fold change
#' which is calculated as geometric mean of the differences between the
#' quantiles for the different classes found in the label.
#' \item The prevalence shift between the two different classes found in
#' the label.
#' }
#'
#' Finally, the function produces a plot of the top \code{max.show}
#' associated features at a user-specified significance level \code{alpha},
#' showing the distribution of the log10-transformed abundances for both
#' classes, and user-selected panels for the effect (AU-ROC, Prevalence
#' Shift, and Fold Change).
#'@export
#'
#'@examples
#' # Example data
#' data(siamcat_example)
#'
#' # Simple example
#' siamcat_example <- check.associations(siamcat_example,
#' fn.plot='./assoc_plot.pdf')
#'
#' # Plot associations as box plot
#' siamcat_example <- check.associations(siamcat_example,
#' fn.plot='./assoc_plot_box.pdf', plot.type='box')
#'
#' # Additionally, sort by p-value instead of by fold change
#' siamcat_example <- check.associations(siamcat_example,
#' fn.plot='./assoc_plot_fc.pdf', plot.type='box', sort.by='p.val')
#'
#' # Custom colors
#' siamcat_example <- check.associations(siamcat_example,
#' fn.plot='./assoc_plot_blue_yellow.pdf', plot.type='box',
#' color.scheme=c('cornflowerblue', '#ffc125'))
check.associations <- function(siamcat, fn.plot=NULL, color.scheme = "RdYlBu",
alpha = 0.05, mult.corr = "fdr", sort.by = "fc", detect.lim = 1e-06,
pr.cutoff = 1e-6, max.show = 50, plot.type = "quantile.box",
panels = c("fc", "auroc"), prompt=TRUE, feature.type='filtered',
verbose = 1) {
if (verbose > 1)
message("+ starting check.associations")
s.time <- proc.time()[3]
# check panel and plot.type parameter
if (!all(panels %in% c("fc", "auroc", "prevalence"))) {
stop("Unknown panel-type selected!")
}
panels <- unique(panels)
if (length(panels) > 3) {
warning(
"Plot layout is not suited for more than 3 panels.
Continuing with first three panels."
)
panels <- panels[seq_len(3)]
}
if ((!plot.type %in%
c("bean", "box", "quantile.box", "quantile.rect")) ||
length(plot.type) != 1) {
warning("Plot type has not been specified properly! Continue with",
" quantile.box.")
plot.type <- "quantile.box"
}
if (!feature.type %in% c('original', 'filtered', 'normalized')){
stop("Unrecognised feature type, exiting...\n")
}
# get features
if (feature.type == 'original'){
feat <- get.orig_feat.matrix(siamcat)
} else if (feature.type == 'filtered'){
if (is.null(filt_feat(siamcat, verbose=0))){
stop('Features have not yet been filtered, exiting...\n')
}
feat <- get.filt_feat.matrix(siamcat)
} else if (feature.type == 'normalized'){
if (is.null(norm_feat(siamcat, verbose=0))){
stop('Features have not yet been normalized, exiting...\n')
}
feat <- get.norm_feat.matrix(siamcat)
}
if (any(is.na(feat))){
stop('Features contain NAs. Exiting...')
}
if ((any(colSums(feat) > 1.01) | any(feat < -0.01)) &
feature.type != 'normalized'){
stop('This function expects compositional data. Exiting...')
}
# check label
label <- label(siamcat)
if (label$type == 'TEST'){
stop('Can not check assocations for a',
' SIAMCAT object with TEST label! Exiting...')
}
# check fn.plot
if (is.null(fn.plot)) {
message(paste0('### WARNING: Not plotting to a pdf-file.\n',
'### The plot is optimized for landscape DIN-A4 (or similar) ',
'layout.\n### Please make sure that your plotting region is',
' large enough!!!\n### Use at your own risk...'))
if (prompt == TRUE){
continue <- askYesNo('Are you sure that you want to continue?',
default = TRUE,
prompts = getOption("askYesNo",
gettext(c("Yes", "No", "Cancel"))))
} else {
continue <- TRUE
}
if (!continue || is.na(continue)){
opt <- options(show.error.messages = FALSE)
on.exit(options(opt))
stop('Exiting...')
}
par.old <- par(no.readonly=TRUE)
}
# either give n_classes colors or color palette
col <- check.color.scheme(color.scheme, label)
### Calculate different effect sizes
if (verbose > 2)
message("+++ analysing features\n")
probs.fc <- seq(.1, .9, .05)
if (is.null(associations(siamcat, verbose=0))){
result.list <- analyse.binary.marker(
feat = feat,
label = label,
detect.lim = detect.lim,
colors = col,
pr.cutoff = pr.cutoff,
mult.corr = mult.corr,
alpha = alpha,
probs.fc = probs.fc,
take.log=ifelse(feature.type == 'normalized', FALSE, TRUE),
verbose = verbose
)
# update siamcat
associations(siamcat) <- list(
assoc.results=result.list$effect.size,
assoc.param=list(detect.lim=result.list$detect.lim,
pr.cutoff=pr.cutoff, probs.fc=probs.fc,
mult.corr=mult.corr, alpha=alpha,
feature.type=feature.type))
} else {
# if already existing, check parameters
old.params <- assoc_param(siamcat)
new.params <- list(detect.lim=detect.lim,
pr.cutoff=pr.cutoff, probs.fc=probs.fc,
mult.corr=mult.corr, alpha=alpha,
feature.type=feature.type)
check <- any(all.equal(new.params, old.params) == TRUE)
check <- all(check, nrow(associations(siamcat)) == nrow(feat))
check <- all(check,
all(rownames(associations(siamcat)) == rownames(feat)))
# if the same, don't compute again but rather use the old resutls
if (check){
result.list <- list()
result.list$effect.size <- associations(siamcat)
result.list$detect.lim <- assoc_param(siamcat)$detect.lim
} else {
result.list <- analyse.binary.marker(
feat = feat,
label = label,
detect.lim = detect.lim,
colors = col,
pr.cutoff = pr.cutoff,
mult.corr = mult.corr,
alpha = alpha,
probs.fc = probs.fc,
take.log=ifelse(feature.type == 'normalized', FALSE, TRUE),
verbose = verbose
)
# update siamcat
associations(siamcat) <- list(
assoc.results=result.list$effect.size,
assoc.param=list(detect.lim=result.list$detect.lim,
pr.cutoff=pr.cutoff, probs.fc=probs.fc,
mult.corr=mult.corr, alpha=alpha,
feature.type=feature.type))
}
}
########################################################################
# extract relevant info for plotting
temp <- get.plotting.idx(result.list$effect.size, alpha=alpha,
sort.by=sort.by, max.show=max.show, verbose=verbose)
if (is.null(temp)){
return(siamcat)
}
effect.size <- result.list$effect.size[temp$idx, , drop=FALSE]
truncated <- temp$truncated
detect.lim <- result.list$detect.lim
feat.red <- feat[temp$idx, , drop=FALSE]
if (feature.type == 'normalized'){
feat.plot <- feat.red
} else {
feat.red.log <- log10(feat.red + detect.lim)
feat.plot <- feat.red.log
}
########################################################################
### generate plots with significant associations between
## features and labels
# make plot matrix dependent on panels parameters
if (verbose > 2)
message("+++ preparing plotting layout")
if (length(panels) == 3) {
layout.mat <- cbind(2, 1, t(seq(3, length.out = length(panels))))
widths <- c(0.5, 0.1, rep(0.4 / 3, length(panels)))
} else {
layout.mat <- cbind(2, 1, t(seq(3, length.out = length(panels))))
widths <- c(0.5, 0.1, rep(0.2, length(panels)))
}
if (!is.null(fn.plot)) {
pdf(fn.plot,
paper = 'special',
height = 8.27,
width = 11.69) # format:A4 landscape
}
layout(mat = layout.mat, widths = widths)
########################################################################
# PANEL 2: P-VALUES
# print p-values in second panel of the plot
associations.pvals.plot(p.vals = effect.size$p.adj,
alpha = alpha, mult.corr = mult.corr,
verbose = verbose)
########################################################################
# PANEL 1: DATA
# prepare margins
associations.margins.plot(species_names = row.names(feat.red),
verbose = verbose)
if (verbose > 2)
message("+++ plotting results")
if (plot.type == "bean") {
associations.bean.plot(feat.plot,
label,
col = col,
take.log=ifelse(feature.type == 'normalized', FALSE, TRUE),
verbose = verbose)
} else if (plot.type == "box") {
associations.box.plot(feat.plot,
label,
take.log=ifelse(feature.type == 'normalized', FALSE, TRUE),
col = col,
verbose = verbose)
} else if (plot.type == "quantile.box") {
associations.quantile.box.plot(feat.plot,
label,
col = col,
take.log=ifelse(feature.type == 'normalized', FALSE, TRUE),
verbose = verbose)
} else if (plot.type == "quantile.rect") {
associations.quantile.rect.plot(feat.plot,
label,
col = col,
take.log=ifelse(feature.type == 'normalized', FALSE, TRUE),
verbose = verbose)
}
# plot title
xlab <- ifelse(feature.type=='normalized',
'Normalized abundance', 'Abundance (log10-scale)')
if (!truncated) {
title(main = 'Differentially abundant features', xlab = xlab)
} else {
title(
main = paste(
'Differentially abundant features\nshowing top',
max.show,
'features'
), xlab = xlab)
}
########################################################################
# OTHER PANELS
for (p in panels) {
if (p == "fc") {
associations.fcs.plot(
fc.all = effect.size$fc,
binary.cols = effect.size$bcol,
verbose = verbose
)
} else if (p == "prevalence") {
associations.pr.shift.plot(
pr.shifts = effect.size[,c('pr.n', 'pr.p')],
col = col,
verbose = verbose
)
} else if (p == "auroc") {
associations.aucs.plot(
aucs = effect.size[, c('auc', 'auc.ci.l', 'auc.ci.h')],
binary.cols = effect.size$bcol,
verbose = verbose
)
}
}
# close pdf device
if (!is.null(fn.plot)) {
tmp <- dev.off()
} else {
par(par.old)
}
e.time <- proc.time()[3]
if (verbose > 1)
message(paste(
"+ finished check.associations in",
formatC(e.time - s.time, digits = 3),
"s"
))
if (verbose == 1 & !is.null(fn.plot))
message(paste(
"Plotted associations between features and label",
"successfully to:", fn.plot
))
return(siamcat)
}
# ##############################################################################
### AUC
#' @keywords internal
associations.aucs.plot <- function(aucs, binary.cols, verbose = 1) {
if (verbose > 2)
message("+ starting associations.aucs.plot")
# set margins
par(mar = c(5.1, 0, 4.1, 1.6))
# plot background
plot(
NULL,
xlab = '',
ylab = '',
xaxs = 'i',
yaxs = 'i',
axes = FALSE,
xlim = c(0, 1),
ylim = c(0.5, nrow(aucs) + 0.5),
type = 'n'
)
ticks <- seq(0, 1.0, length.out = 5)
tick.labels <- formatC(ticks, digits = 2)
# plot gridlines
for (v in ticks) {
abline(v = v,
lty = 3,
col = 'lightgrey')
}
# make thicker line at .5
abline(v = .5, lty = 1, col = 'lightgrey')
# plot single feature aucs
for (i in seq_len(nrow(aucs))) {
segments(
x0 = aucs[i, 2],
x1 = aucs[i, 3],
y0 = i,
col = 'lightgrey',
lwd = 1.5
)
points(aucs[i, 1], i, pch = 18, col = binary.cols[i])
points(aucs[i, 1],
i,
pch = 5,
col = 'black',
cex = 0.9)
}
# Title and axis label
axis(
side = 1,
at = ticks,
labels = tick.labels,
cex.axis = 0.7
)
title(main = 'Feature AUCs', xlab = 'AU-ROC')
if (verbose > 2)
message("+ finished associations.aucs.plot")
}
# ##############################################################################
### FC
#' @keywords internal
associations.fcs.plot <-
function(fc.all, binary.cols, verbose = 1) {
if (verbose > 2)
message("+ starting associations.fcs.plot")
# margins
par(mar = c(5.1, 0, 4.1, 1.6))
# get minimum and maximum fcs
mx <- max(ceiling(abs(
range(fc.all, na.rm = TRUE, finite = TRUE)
)))
mn <- -mx
# plot background
plot(
NULL,
xlab = '',
ylab = '',
xaxs = 'i',
yaxs = 'i',
axes = FALSE,
xlim = c(mn, mx),
ylim = c(0.2, length(fc.all) + 0.2),
type = 'n'
)
grid(NULL, NA, lty = 3, col = 'lightgrey')
# plot bars
barplot(
fc.all,
horiz = TRUE,
width = 0.6,
space = 2 / 3,
col = binary.cols,
axes = FALSE,
add = TRUE,
names.arg = FALSE
)
# gridlines and axes labels
ticks <- seq(from = mn,
to = mx,
length.out = 5)
tick.labels <- formatC(ticks, digits = 2)
axis(
side = 1,
at = ticks,
labels = tick.labels,
cex.axis = 0.7
)
title(main = 'Fold change', xlab = 'Generalized fold change')
if (verbose > 2)
message("+ finished associations.fcs.plot")
}
# ##############################################################################
### PREVALENCE
#' @keywords internal
associations.pr.shift.plot <-
function(pr.shifts, col, verbose = 1) {
if (verbose > 2)
message("+ starting associations.pr.shift.plot")
# margins
par(mar = c(5.1, 0, 4.1, 1.6))
# plot background
plot(
NULL,
xlab = '',
ylab = '',
xaxs = 'i',
yaxs = 'i',
axes = FALSE,
xlim = c(0, 1),
ylim = c(0.2, nrow(pr.shifts) + 0.2),
type = 'n'
)
# gridlines and axes labels
ticks <- seq(from = 0,
to = 1,
length.out = 5)
for (v in ticks) {
abline(v = v,
lty = 3,
col = 'lightgrey')
}
tick.labels <- formatC(ticks * 100, digits = 3)
axis(
side = 1,
at = ticks,
labels = tick.labels,
cex.axis = 0.7
)
# plot bars
row.names(pr.shifts) <- NULL
barplot(
t(pr.shifts),
horiz = TRUE,
axes = FALSE,
add = TRUE,
space = c(0, 4 / 3),
beside = TRUE,
width = .3,
col = c(col[1], col[2])
)
title(main = 'Prevalence shift', xlab = 'Prevalence [%]')
if (verbose > 2)
message("+ finished associations.pr.shift.plot")
}
# ##############################################################################
# P-VALUES
#' @keywords internal
associations.pvals.plot <- function(p.vals, alpha, mult.corr, verbose = 1) {
if (verbose > 2)
message("+ starting associations.pvals.plot")
# margins
par(mar = c(5.1, .0, 4.1, 1.6))
p.vals.log <- -log10(p.vals)
# get minimum and maximum
mx <-
max(ceiling(abs(
range(p.vals.log, na.rm = TRUE, finite = TRUE)
)))
mn <- 0
p.vals.log[is.infinite(p.vals.log)] <- mx
# plot background
plot(
NULL,
xlab = '',
ylab = '',
xaxs = 'i',
yaxs = 'i',
axes = FALSE,
xlim = c(mn, mx),
ylim = c(0.2, length(p.vals) + 0.2),
type = 'n'
)
grid(NULL, NA, lty = 3, col = 'lightgrey')
# plot bars
barplot(
p.vals.log,
horiz = TRUE,
width = 0.6,
space = 2 / 3,
col = 'lightgrey',
axes = FALSE,
add = TRUE,
names.arg = FALSE
)
# gridlines and axes labels
ticks <- seq(from = mn, to = mx)
abline(v = -log10(alpha),
lty = 1,
col = 'red')
tick.labels <- formatC(ticks, digits = 2)
axis(
side = 1,
at = ticks,
labels = tick.labels,
cex.axis = 0.7
)
if (mult.corr != 'none'){
title(main = 'Significance', xlab = '-log10(adj. p value)')
} else {
title(main='Significance', xlab='-log10(p value)')
}
if (verbose > 2)
message("+ finished associations.pvals.plot")
}
# ##############################################################################
# COLOR
# check if a string is a valid r color reprensentation
# from stackoverflow: Check if character string is a valid color representation
# https://stackoverflow.com/questions/13289009
#' @keywords internal
is.color <- function(x) {
vapply(
x,
FUN = function(z) {
tryCatch(
is.matrix(col2rgb(z)),
error = function(e)
FALSE
)
},
FUN.VALUE = logical(1)
)
}
### check the user-supplied color scheme for validity
### color scheme may either be a single RColorBrewer palette or a vector of
### the same length as the number of classes containing interpretable colors
### as strings
#' @keywords internal
check.color.scheme <- function(color.scheme, label, verbose = 1) {
if (verbose > 2)
message("+ starting check.color.scheme")
n.classes = ifelse(label$type == 'BINARY', 2,
length(unique(label$label)))
if (length(color.scheme) == 1 &&
is.character(color.scheme)) {
if (n.classes == 2) {
# if color scheme and binary label, make colors as before
if (!color.scheme %in% row.names(brewer.pal.info)) {
warning(
"Not a valid RColorBrewer palette name, defaulting to
RdBu.\n See brewer.pal.info for more information about
RColorBrewer palettes."
)
color.scheme <- 'RdYlBu'
}
colors <-
rev(colorRampPalette(brewer.pal(
brewer.pal.info[color.scheme,
'maxcolors'], color.scheme
))(2))
} else {
# if color scheme and multiclass label, make colors either directly out
# of the palette (if n.classes smaller than maxcolors) or like before
if (!color.scheme %in% row.names(brewer.pal.info)) {
warning(
"Not a valid RColorBrewer palette name, defaulting to
Set3.\n See brewer.pal.info for more information about
RColorBrewer palettes."
)
color.scheme <- 'Set3'
}
# if color scheme and multiclass label, check that the palette is not
# divergent or sequential, but qualitative. Only issue warning.
if (brewer.pal.info[color.scheme, 'category'] != 'qual')
warning("Using a divergent or sequential color palette for
multiclass data.")
if (n.classes <= brewer.pal.info[color.scheme, 'maxcolors']) {
colors <- brewer.pal(n.classes, color.scheme)
} else {
warning("The data contains more classes than the color.palette
provides.")
colors <-
rev(colorRampPalette(brewer.pal(
brewer.pal.info[color.scheme,
'maxcolors'], color.scheme
))(n.classes))
}
}
} else if (length(color.scheme == n.classes) &&
all(is.color(color.scheme))) {
# if colors, check that all strings are real colors and check that
# the same length as n classes
# convert color names to hex representation
colors <-
vapply(
color.scheme,
FUN = function(x) {
rgb(t(col2rgb(x)),
maxColorValue = 255)
},
FUN.VALUE = character(1),
USE.NAMES = FALSE
)
} else {
stop("Supplied colors do not match the number of classes or are no
valid colors")
}
# add transparency
colors <- vapply(
colors,
FUN = function(x) {
paste0(x, '85')
},
FUN.VALUE = character(1),
USE.NAMES = FALSE
)
if (verbose > 2)
message("+ finished check.color.scheme")
return(colors)
}
#' @keywords internal
create.tints <- function(colour, vec) {
new.cols <-
vapply(
vec,
FUN = function(x) {
rgb(matrix(col2rgb(colour) / 255 +
(1 - col2rgb(colour) / 255) * x, ncol = 3))
},
FUN.VALUE = character(1)
)
return(new.cols)
}
#' @keywords internal
change.transparency <- function(col.name) {
if (nchar(col.name) > 7) {
# adjust alpha channel by reducing transparency
a = substr(col.name, nchar(col.name) - 1, nchar(col.name))
a = 1 - (1 - as.numeric(paste('0x', a, sep = '')) / 255) / 2
new.col = gsub('..$', toupper(as.hexmode(round(a * 255))), col.name)
} else {
new.col <- col.name
}
return(new.col)
}
# ##############################################################################
# UTILITY FUNCTIONS
### Prepare margins for the first plots make left margin as big as the
### longest label or maximally 20.1 lines
#' @keywords internal
associations.margins.plot <-
function(species_names, p.label, verbose = 1) {
if (verbose > 2)
message("+ starting associations.margins.plot")
cex.org <- par()$cex
par(mar = c(5.1, 18, 4.1, 1.1), cex = 1)
temp = par()$mai
cex.labels <- min(.7, (((
par()$pin[2] / length(species_names)
) * .6) /
max(
strheight(species_names, units = 'inches')
)))
max_name <- max(strwidth(species_names, units = 'inches',
cex = cex.labels)) + temp[4]
temp[2] <- min(temp[2], max_name)
par(mai = temp, cex = cex.org)
if (verbose > 2)
message("+ finished associations.margins.plot")
}
#' @keywords internal
associations.labels.plot <-
function(labels, plot.type, verbose = 1) {
if (verbose > 2)
message("+ starting associations.labels.plot")
adj <- rep(0, length(labels))
if (plot.type == 'quantile.rect')
adj <- rep(-0.5, length(labels))
if (plot.type == 'box')
adj <- -0.5 + seq_along(labels)
cex.org <- par()$cex
par(cex = 1)
cex.labels <- min(.7, (((
par()$pin[2] / length(labels)
) * .6) /
max(strheight(labels, units = 'inches'))))
for (i in seq_along(labels)) {
mtext(
labels[i],
2,
line = 0,
at = i + adj[i],
las = 1,
cex = cex.labels
)
}
par(cex = cex.org)
if (verbose > 2)
message("+ finished associations.labels.plot")
}
#' @keywords internal
associations.quantiles.plot <- function(quantiles, up = TRUE, col) {
n.spec <- nrow(quantiles)
adj.y0 <- ifelse(up, 0, 0.3)
adj.y1 <- ifelse(up, 0.3, 0)
# box
rect(quantiles[, 2],
seq_len(n.spec) - adj.y0,
quantiles[, 4],
seq_len(n.spec) + adj.y1,
col = col)
# 90% interval
segments(quantiles[, 1], seq_len(n.spec), quantiles[, 5], seq_len(n.spec))
segments(
quantiles[, 1],
y0 = seq_len(n.spec) - adj.y0 / 3 * 2,
y1 = seq_len(n.spec) + adj.y1 / 3 * 2
)
segments(
quantiles[, 5],
y0 = seq_len(n.spec) - adj.y0 / 3 * 2,
y1 = seq_len(n.spec) + adj.y1 / 3 * 2
)
# median
segments(
quantiles[, 3],
y0 = seq_len(n.spec) - adj.y0,
y1 = seq_len(n.spec) + adj.y1,
lwd = 3
)
}
# ##############################################################################
# BEAN PLOT
#' @keywords internal
associations.bean.plot <-
function(data.mat, label, col, take.log=TRUE, verbose = 1) {
if (verbose > 2)
message("+ starting associations.bean.plot")
p.label <- max(label$info)
n.label <- min(label$info)
# create data.frame in format for beanplot
bean.data <- data.frame(data = c(data.mat))
bean.data$factor <- c(vapply(
label$label,
FUN = function(x) {
paste(rownames(data.mat),
names(label$info)[match(x, label$info)])
},
FUN.VALUE = character(nrow(data.mat)),
USE.NAMES = FALSE
))
# ensure correct ordering by converting to a factor
bean.data$factor <- factor(bean.data$factor,
levels = paste(rep(rownames(data.mat), each = 2),
names(label$info[order(label$info)])))
mn <- floor(c(min(bean.data$data)))
mx <- ceiling(c(max(bean.data$data)))
plot(
NULL,
xlab = '',
ylab = '',
xaxs = 'i',
yaxs = 'i',
axes = FALSE,
xlim = c(mn - 1.5, mx + 1),
ylim = c(0.45, nrow(data.mat) + 0.6),
type = 'n'
)
ticks <- mn:mx
for (v in ticks) {
abline(v = v,
lty = 3,
col = 'lightgrey')
}
if (take.log){
tick.labels <- formatC(10 ^ ticks, format = 'E', digits = 0)
axis(side = 1,at = ticks,labels = tick.labels,cex.axis = 0.7)
} else {
axis(1, ticks, cex.axis=0.7)
}
beanplot(
data ~ factor,
data = bean.data,
side = "both",
bw = "nrd0",
col = list(col[1], col[2]),
horizontal = TRUE,
names = c(""),
show.names = FALSE,
beanlines = "median",
maxstripline = 0.2,
what = c(FALSE, TRUE, TRUE, FALSE),
axes = FALSE,
add = TRUE
)
legend(
'topright',
legend = c(names(which(label$info == p.label)),
names(which(label$info == n.label))),
fill = rev(col),
bty = 'n'
)
associations.labels.plot(rownames(data.mat),
plot.type = 'bean',
verbose = verbose)
if (verbose > 2)
message("+ finished associations.bean.plot")
}
# ##############################################################################
# BOX PLOT
#' @keywords internal
associations.box.plot <-
function(data.mat, label, col, take.log=TRUE, verbose = 1) {
if (verbose > 2)
message("+ starting associations.box.plot")
box.colors <- rep(c(col[1], col[2]), nrow(data.mat))
p.label <- max(label$info)
n.label <- min(label$info)
# create data.frame in format for beanplot
plot.data <- data.frame(data = c(data.mat))
plot.data$factor <- c(vapply(
label$label,
FUN = function(x) {
paste(rownames(data.mat),
names(label$info)[match(x, label$info)])
},
FUN.VALUE = character(nrow(data.mat)),
USE.NAMES = FALSE
))
# ensure correct ordering by converting to a factor
plot.data$factor <- factor(plot.data$factor,
levels = paste(rep(rownames(data.mat), each = 2),
names(label$info[order(label$info)])))
mn <- floor(c(min(data.mat)))
mx <- ceiling(c(max(data.mat)))
plot(
NULL,
xlab = '',
ylab = '',
xaxs = 'i',
yaxs = 'i',
axes = FALSE,
xlim = c(mn - 0.2, mx + 1),
ylim = c(+0.5, nrow(data.mat) * 2 + 0.5),
type = 'n'
)
ticks <- mn:mx
for (v in ticks) {
abline(v = v,
lty = 3,
col = 'lightgrey')
}
boxplot(
data ~ factor,
data = plot.data,
horizontal = TRUE,
names = c(""),
show.names = FALSE,
col = box.colors,
axes = FALSE,
outcol = c(col[1], col[2]),
add = TRUE
)
if (take.log){
tick.labels <- formatC(10 ^ ticks, format = 'E', digits = 0)
axis(side = 1,at = ticks,labels = tick.labels,cex.axis = 0.7)
} else {
axis(1, ticks, cex.axis=0.7)
}
legend(
'topright',
legend = c(names(which(label$info == p.label)),
names(which(label$info == n.label))),
fill = rev(col),
bty = 'n'
)
associations.labels.plot(row.names(data.mat),
plot.type = 'box',
verbose = verbose)
if (verbose > 2)
message("+ finished associations.box.plot")
}
# ##############################################################################
# QUANTILE BOX PLOT
#' @keywords internal
associations.quantile.box.plot <- function(data.mat, label, take.log=TRUE, col,
verbose = 1) {
if (verbose > 2)
message("+ starting associations.quantile.box.plot")
pos.col <- col[2]
neg.col <- col[1]
p.label <- max(label$info)
n.label <- min(label$info)
p.idx <- which(label$label == p.label)
n.idx <- which(label$label == n.label)
p.n <- length(which(label$label == p.label))
n.n <- length(which(label$label == n.label))
n.spec <- nrow(data.mat)
if (take.log){
p.min <- floor(min(data.mat, na.rm = TRUE))
p.max <- 0
} else {
p.min <- floor(min(data.mat, na.rm = TRUE))
p.max <- ceiling(max(data.mat, na.rm = TRUE))
}
plot(
rep(p.min, n.spec),
seq_len(n.spec),
xlab = '',
ylab = '',
yaxs = 'i',
axes = FALSE,
xlim = c(p.min, p.max),
ylim = c(0.5, n.spec + 0.5),
frame.plot = FALSE,
type = 'n'
)
for (v in seq(p.min, p.max, 1)) {
abline(v = v,
lty = 3,
col = 'lightgrey')
}
tck = p.min:p.max
if (take.log){
axis(1, tck, formatC(10 ^ tck, format='E', digits=0),
las=1, cex.axis=0.7)
} else {
axis(1, tck, las=1, cex.axis=0.7)
}
# get quantiles
quant.probs <- c(0.05, 0.25, 0.5, 0.75, 0.95)
quantiles.pos = rowQuantiles(data.mat[, p.idx, drop=FALSE],
probs = quant.probs, na.rm = TRUE, drop=FALSE)
quantiles.neg = rowQuantiles(data.mat[, n.idx, drop=FALSE],
probs = quant.probs, na.rm = TRUE, drop=FALSE)
# inter-quartile range
associations.quantiles.plot(quantiles.pos, up = TRUE, pos.col)
associations.quantiles.plot(quantiles.neg, up = FALSE, neg.col)
# scatter plot on top
for (i in seq_len(n.spec)) {
pos.col.t <- change.transparency(pos.col)
neg.col.t <- change.transparency(neg.col)
points(
data.mat[i, p.idx],
rep(i + 0.15, p.n) + rnorm(p.n, sd = 0.03),
pch = 16,
cex = 0.6,
col = pos.col.t
)
points(
data.mat[i, n.idx],
rep(i - 0.15, n.n) + rnorm(n.n, sd = 0.03),
pch = 16,
cex = 0.6,
col = neg.col.t
)
}
legend(
'topright',
legend = c(names(which(label$info == p.label)),
names(which(label$info == n.label))),
fill = rev(col),
bty = 'n'
)
associations.labels.plot(row.names(data.mat),
plot.type = 'quantile.box',
verbose = verbose)
if (verbose > 2)
message("+ finished associations.quantile.box.plot")
}
# ##############################################################################
# QUANTILE RECT PLOT
#' @keywords internal
associations.quantile.rect.plot <-
function(data.mat, label, col, take.log=TRUE, verbose = 1) {
if (verbose > 2)
message("+ starting associations.quantile.rect.plot")
n.spec <- nrow(data.mat)
quant.probs <- seq(from = 0.1, to = 0.9, by = 0.1)
p.label <- max(label$info)
n.label <- min(label$info)
p.idx <- which(label$label == p.label)
n.idx <- which(label$label == n.label)
quantiles.pos = rowQuantiles(data.mat[, p.idx, drop=FALSE],
probs = quant.probs,
na.rm = TRUE, drop=FALSE)
quantiles.neg = rowQuantiles(data.mat[, n.idx, drop=FALSE],
probs = quant.probs,
na.rm = TRUE, drop=FALSE)
if (take.log){
p.min <- floor(min(data.mat, na.rm = TRUE))
p.max <- 0
} else {
p.min <- floor(min(data.mat, na.rm = TRUE))
p.max <- ceiling(max(data.mat, na.rm = TRUE))
}
plot(
rep(p.min, n.spec),
seq_len(n.spec),
xlab = '',
ylab = '',
yaxs = 'i',
axes = FALSE,
xlim = c(p.min, p.max),
ylim = c(0, n.spec),
frame.plot = FALSE,
type = 'n'
)
for (v in seq(p.min, p.max, 1)) {
abline(v = v,
lty = 3,
col = 'lightgrey')
}
tck = p.min:p.max
if (take.log){
axis(1, tck, formatC(10^tck, format='E', digits=0),
las=1, cex.axis=0.7)
} else {
axis(1, tck, las=1, cex.axis=0.7)
}
# create different tints of the colours
colors.p <-
rev(create.tints(vec = seq(0, 1, length.out = 4),
colour = col[2]))
colors.n <-
rev(create.tints(vec = seq(0, 1, length.out = 4),
colour = col[1]))
associations.quantile.rect.sub.plot(quantiles.pos, up = TRUE, colors.p)
associations.quantile.rect.sub.plot(quantiles.neg, up = FALSE, colors.n)
associations.quantile.median.sub.plot(quantiles.pos, up = TRUE)
associations.quantile.median.sub.plot(quantiles.neg, up = FALSE)
legend(0.3*p.min, n.spec,
legend = c("Quantiles", "40%-60%", "30%-70%", "20%-80%", "10%-90%",
"median", "", "", "", "", ""),
bty = 'n', cex = 1, fill = c('white', rev(colors.p), 'white',
'white', rev(colors.n), 'white'),
lwd = 1.3, ncol = 2, border = c("white", "black", "black",
"black", "black", "white", "white", "black", "black", "black",
"black", "white"))
legend(0.3*p.min + abs(0.016*p.min), n.spec,
legend = c("", "", "", "", "", ""), bty = 'n',
lty = c(0, 0, 0, 0, 0, 0),
# cap legend size for diamond (should look
# symmetric to other symbols)
pch = 18, cex = 1,
pt.cex = c(0, 0, 0, 0, 0, min(35 / n.spec, 2.25)))
legend('bottomright',
legend = c(names(which(label$info == max(label$info))),
names(which(label$info == min(label$info)))),
fill = rev(col), bty = 'n')
associations.labels.plot(rownames(data.mat),
plot.type = 'quantile.rect',
verbose = verbose)
if (verbose > 2)
message("+ finished associations.quantile.rect.plot")
}
#' @keywords internal
associations.quantile.median.sub.plot <-
function(quantiles, up = TRUE) {
n.spec <- nrow(quantiles)
adj.y <- ifelse(up, 0.15,-0.15)
points(
quantiles[, ceiling(ncol(quantiles) / 2)],
y = (0.5:n.spec) + adj.y,
pch = 18,
cex = min(35 / n.spec, 4)
)
}
#' @keywords internal
associations.quantile.rect.sub.plot <-
function(quantiles, up = TRUE, colors) {
n.spec <- nrow(quantiles)
adj.y0 <- ifelse(up, 0, 0.3)
adj.y1 <- ifelse(up, 0.3, 0)
for (i in seq_len(ncol(quantiles) / 2)) {
rect(
quantiles[, i],
(0.5:n.spec) - adj.y0,
quantiles[, ncol(quantiles) + 1 - i],
(0.5:n.spec) + adj.y1,
col = colors[i],
border = c("black"),
lwd = 0.9
)
}
}
# ##############################################################################
### maker analysis for two-class data
# calculate p-value with Wilcoxon
# fold change as normalized absolute difference between quantiles
# prevalence shift
# single marker AUC
#' @keywords internal
analyse.binary.marker <- function(feat, label, detect.lim, colors,
pr.cutoff, mult.corr, alpha, max.show, sort.by, probs.fc = seq(.1, .9, .05),
take.log=TRUE, verbose = 1) {
if (verbose > 1)
message("+ starting analyse.binary.marker")
s.time <- proc.time()[3]
############################################################################
### Calculate wilcoxon, pseudo-FC, prevalence shift, and AUC for all feats
############################################################################
if (verbose > 1)
message('+++ calculating effect size for each feature.')
if (is.null(detect.lim) & take.log==TRUE) {
warning(
"Pseudo-count before log-transformation not supplied! Estimating it
as 5% percentile.\n"
)
detect.lim <- quantile(feat[feat != 0], 0.05)
}
if (any(feat[feat != 0] < detect.lim) & take.log==TRUE){
cnt <- length(which(feat[feat!=0] < detect.lim))
percentage <- (cnt/length(feat[feat!=0]))*100
if (percentage >= 5){
warning(paste0('### Some values (',cnt, ' or ',
formatC(percentage, digits=2),
'% of non-zero entries',
') are smaller than the given detection limit!'))
}
}
positive.label <- max(label$info)
negative.label <- min(label$info)
if (verbose)
pb <- progress_bar$new(total = nrow(feat))
effect.size <- data.frame(t(apply(feat, 1, FUN = function(x) {
# pseudo-fold change as differential quantile area
if (take.log == TRUE){
q.p <- quantile(log10(x[which(label$label == positive.label)] +
detect.lim), probs = probs.fc)
q.n <- quantile(log10(x[which(label$label == negative.label)] +
detect.lim), probs = probs.fc)
} else {
q.p <- quantile(x[which(label$label == positive.label)],
probs = probs.fc)
q.n <- quantile(x[which(label$label == negative.label)],
probs = probs.fc)
}
fc <- sum(q.p - q.n) / length(q.p)
# wilcoxon
p.val <- wilcox.test(x[which(label$label == negative.label)],
x[which(label$label == positive.label)], exact = FALSE)$p.value
# AU-ROC
temp <- roc(predictor = x, response = label$label, ci = TRUE,
direction = '<', levels = label$info)
aucs <- c(temp$ci)
# prevalence shift
temp.n <- sum(x[which(label$label == negative.label)] >= pr.cutoff) /
length(which(label$label == negative.label))
temp.p <- sum(x[which(label$label == positive.label)] >= pr.cutoff) /
length(which(label$label == positive.label))
pr.shift <- c(temp.p - temp.n, temp.n, temp.p)
if (verbose)
pb$tick()
return(c('fc' = fc, 'p.val' = p.val, 'auc' = aucs[2],
'auc.ci.l' = aucs[1], 'auc.ci.h' = aucs[3],
'pr.shift' = pr.shift[1], 'pr.n' = pr.shift[2],
'pr.p' = pr.shift[3]))
}
)))
effect.size$bcol <-
ifelse(effect.size[, 'auc'] >= 0.5, colors[2], colors[1])
### Apply multi-hypothesis testing correction
if (!tolower(mult.corr) %in% c("holm", "hochberg", "hommel", "bonferroni",
"BH", "BY", "fdr", "none")) {
stop(
"! Unknown multiple testing correction method:', mult.corr,'
Stopping!\n Must of one of c('none','bonferroni', 'holm','fdr',
'bhy')"
)
}
if (mult.corr == 'none') {
warning('WARNING: No multiple hypothesis testing performed.')
effect.size$p.adj <- effect.size$p.val
} else {
effect.size$p.adj <-
p.adjust(effect.size$p.val, method = tolower(mult.corr))
}
if (verbose > 1)
message(
paste(
'+++ found',
sum(effect.size$p.adj < alpha,
na.rm = TRUE),
'significant associations at a significance level <',
alpha
)
)
e.time <- proc.time()[3]
if (verbose > 1)
message(paste(
"+ finished analyse.binary.marker in",
formatC(e.time - s.time, digits = 3),
"s"
))
return(
list(
"effect.size" = effect.size,
"detect.lim" = detect.lim
)
)
}
#' @keywords internal
get.plotting.idx <- function(df.results, alpha, sort.by, max.show, verbose){
idx <- which(df.results$p.adj < alpha)
if (length(idx) == 0) {
warning(paste0('No significant associations found.',
' No plot will be produced.\n'))
return(NULL)
} else if (length(idx) < 5) {
warning(paste0('Less than 5 associations found. Consider',
' changing your alpha value.'))
}
idx <- idx[order(df.results$p.adj[idx], decreasing = TRUE)]
# # truncated the list for the following plots
truncated = FALSE
if (length(idx) >= max.show) {
truncated = TRUE
idx <- idx[(length(idx) - max.show + 1):length(idx)]
if (verbose > 1)
message(
paste(
'+++ truncating the list of significant
associations to the top',
max.show
)
)
}
### Sort features
if (verbose > 2)
message('+++ sorting features')
if (!sort.by %in% c('fc', 'p.val', 'pr.shift', 'auc')) {
message(paste0(
'+++ Unknown sorting option: ',
sort.by,
'. Instead order by fold change.'
))
sort.by <- 'fc'
}
if (sort.by == 'fc') {
idx <- idx[order(df.results$fc[idx], decreasing = FALSE)]
} else if (sort.by == 'p.val') {
idx <- idx[order(df.results$p.adj[idx], decreasing = TRUE)]
} else if (sort.by == 'pr.shift') {
idx <- idx[order(df.results$pr.shift[idx], decreasing = FALSE)]
} else if (sort.by == 'auc'){
idx <- idx[order(df.results$auc[idx], decreasing = FALSE)]
}
return(list('idx'=idx,
'truncated'=truncated))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.