Nothing
setGeneric("regionStats", function(x, ...){standardGeneric("regionStats")})
.regionStats <- function(diffs, design, ch, sp, maxFDR, n.perm, window,
mean.trim, min.probes, max.gap, two.sides, verbose, return.tm) {
uch <- unique(ch)
tmeanReal <- matrix(,nrow=nrow(diffs),ncol=ncol(diffs))
tmeanPerms <- lapply(1:ncol(design), function(u) matrix(NA, nrow=nrow(diffs), ncol=n.perm))
if(length(colnames(design)) > 0) names(tmeanPerms) <- colnames(design)
regions <- fdrTabs <- vector("list", length(tmeanPerms))
names(regions) <- names(fdrTabs) <- colnames(design)
ifelse( verbose, print(gc()), gc())
# calculate smoothed statistics
for(col in 1:ncol(diffs)) {
if( verbose )
message("Calculating trimmed means for column ", col, " of design matrix:")
for(ii in 1:length(uch)) {
if( verbose )
message(" ", uch[ii], "-", sep="")
w <- which(ch == uch[ii])
tmeanReal[w,col] <- gsmoothr::tmeanC(sp[w], diffs[w,col], probeWindow=window,
trim=mean.trim, nProbes=min.probes)
if( verbose )
message("R")
for(j in 1:ncol(tmeanPerms[[col]])) {
s <- sample(1:nrow(tmeanReal))
tmeanPerms[[col]][w,j] <- gsmoothr::tmeanC(sp[w], diffs[s,col][w], probeWindow=window,
trim=mean.trim, nProbes=min.probes)
if( verbose )
message(".", appendLF = FALSE)
}
}
if( verbose )
message("Calculating FDR table.")
mx <- max(abs(tmeanPerms[[col]]),na.rm=TRUE)
z <- apply(tmeanPerms[[col]], 2, FUN=function(u) .fdrTable(tmeanReal[,col], u, ch, sp, 40, min.probes, max.gap,
two.sides, maxCutoff=mx, verbose=verbose))
fdrTabs[[col]] <- z[[1]]
for(i in 2:length(n.perm))
fdrTabs[[col]][,2:3] <- fdrTabs[[col]][,2:3] + z[[i]][,2:3]
# re-adjust FDR calculation over all permutations
fdrTabs[[col]]$fdr <- pmin(fdrTabs[[col]]$neg/fdrTabs[[col]]$pos,1)
# select lowest cutoff such that FDR is achieved
w <- which(fdrTabs[[col]]$fdr < maxFDR )
cut <- min( fdrTabs[[col]]$cut[w], na.rm=TRUE )
if( verbose )
message("Using cutoff of ", cut, " for FDR of ", maxFDR)
regions[[col]] <- .getBed(tmeanReal[,col], ch, sp, cut, min.probes, max.gap, two.sides)
}
if(!return.tm)
{
tmeanReal <- NULL
tmeanPerms <- NULL
}
new("RegionStats", list(regions = regions, tmeanReal = tmeanReal, tmeanPerms = tmeanPerms,
fdrTables = fdrTabs))
}
#setMethod("regionStats","AffymetrixCelSet",
# function(x, design = NULL, maxFDR = 0.05, n.perm = 5, window = 600,
# mean.trim = 0.1, min.probes = 10, max.gap = 500, two.sides = TRUE, ind = NULL,
# return.tm = FALSE, verbose = TRUE)
#{
# if(is.null(design))
# stop("Design matrix not provided.")
#
# cdf <- getCdf(x)
#
# if( is.null(ind) )
# ind <- getCellIndices( cdf, useNames=FALSE, unlist=TRUE)
#
# if( nrow(design) != nbrOfArrays(x) )
# stop("The number of rows in the design matrix does not equal the number of columns in the probes data matrix")
#
# acp <- AromaCellPositionFile$byChipType(getChipType(cdf))
# ch <- acp[ind,1,drop=TRUE]
# sp <- acp[ind,2,drop=TRUE]
#
# # cut down on the amount of data read, if some rows of the design matrix are all zeros
# w <- which( rowSums(design != 0) > 0 )
# x <- extract(x,w, verbose=verbose)
# dmP <- log2(extractMatrix(x,cells=ind,verbose=verbose))
#
# # compute probe-level score of some contrast
# diffs <- dmP %*% design[w,]
#
# w <- rowSums( is.na(diffs) )==0
# if( verbose )
# message("Removing ", sum(!w), " rows, due to NAs.")
#
# diffs <- diffs[w,,drop=FALSE]
# ch <- ch[w]
# sp <- sp[w]
#
# rm(dmP)
# ifelse( verbose, print(gc()), gc())
#
# return(.regionStats(diffs, design, ch, sp, maxFDR, n.perm, window, mean.trim,
# min.probes, max.gap, two.sides, verbose, return.tm))
#})
setMethod("regionStats","matrix",
function(x, design = NULL, maxFDR = 0.05, n.perm = 5, window = 600,
mean.trim = 0.1, min.probes = 10, max.gap = 500, two.sides = TRUE, ndf,
return.tm = FALSE, verbose = TRUE)
{
if(is.null(design))
stop("Design matrix not provided.")
# meant for nimblegen data
# cut down on the amount of data read, if some rows of the design matrix are all zeros
w <- which( rowSums(design != 0) > 0 )
diffs = x %*% design
w <- rowSums( is.na(diffs) )==0
if( verbose )
message("Removing ", sum(!w), " rows, due to NAs.")
return(.regionStats(diffs, design, gsub("chr","",ndf$chr), ndf$position, maxFDR,
n.perm, window, mean.trim, min.probes, max.gap, two.sides,
verbose, return.tm))
})
# accesory functions
.getBed <- function(score, ch, sp, cut=NULL, min.probes=10, max.gap, two.sides) {
if( is.null(cut) )
stop("Need to specify 'cut'.")
posInd <- .getRegions(score, ch, sp, min.probes, max.gap, cut, two.sides, doJoin=TRUE)
if( is.null(posInd) )
return(list())
posReg <- data.frame(chr=paste("chr",ch[posInd$start],sep=""),
start=sp[posInd$start], end=sp[posInd$end], score=0,
startInd=posInd$start, endInd=posInd$end, stringsAsFactors=FALSE)
for(i in 1:nrow(posInd))
posReg$score[i] <- round(median(score[ (posInd$start[i]:posInd$end[i]) ]),3)
posReg
}
.getRegionsChr <- function(ind, score, sp, min.probes, max.gap, cutoff, doJoin) {
#pad the beginning & end
probes <- c(FALSE, score[ind] > cutoff, FALSE)
#insert FALSEs in to break up regions with gaps>max.gap
probeGaps <- which(diff(sp[ind])>max.gap)
num.gaps <- length(probeGaps)
ind.2 <- rep(NA, length(ind)+num.gaps)
ind.gaps <- probeGaps+1:num.gaps
ind.nogaps <- (1:length(ind.2))[-ind.gaps]
ind.2[ind.nogaps] <- ind
probes.2 <- rep(FALSE, length(probes)+num.gaps)
probes.gaps <- probeGaps+1:num.gaps+1
probes.nogaps <- (1:length(probes.2))[-probes.gaps]
probes.2[probes.nogaps] <- probes
df <- diff(probes.2)
st <- ind.2[which(df==1)]
en <- ind.2[which(df==-1)-1]
#sort starts & ends again
st <- sort(st)
en <- sort(en)
#join regions with < max.gap basepairs between positive probes
if (doJoin) {
gap.w <- which(sp[st[-1]]-sp[rev(rev(en)[-1])] < max.gap)
if (length(gap.w)>0) {
st <- st[-(gap.w+1)]
en <- en[-gap.w]
}
}
w <- (en-st+1) >= min.probes
if (sum(w)==0)
return(data.frame(start=NULL, end=NULL))
else
data.frame(start=st,end=en)[w,]
}
.getRegions <- function(score, ch, sp, min.probes, max.gap, cutoff, two.sides, doJoin) {
chrInds <- split(1:length(score), ch)
regTable <- data.frame(start=NULL, end=NULL)
for (i in 1:length(chrInds))
regTable <- rbind(regTable, .getRegionsChr(chrInds[[i]], score, sp, min.probes, max.gap, cutoff, doJoin))
if (two.sides)
for (i in 1:length(chrInds))
regTable <- rbind(regTable, .getRegionsChr(chrInds[[i]], -score, sp, min.probes, max.gap, cutoff, doJoin))
return(regTable)
}
.fdrTable <- function(realScore, permScore, ch, sp, cutsLength, min.probes, max.gap, two.sides,
minCutoff = .5, maxCutoff=max( abs(permScore), na.rm=TRUE ), verbose) {
cuts <- seq(minCutoff,maxCutoff,length=cutsLength)
fdr <- matrix(,nrow=length(cuts),ncol=4)
colnames(fdr) <- c("cutoff","neg","pos","fdr")
for(i in 1:length(cuts)) {
pos <- nrow(.getRegions(realScore, ch, sp, min.probes, max.gap, cuts[i], two.sides, doJoin=FALSE))
neg <- nrow(.getRegions(permScore, ch, sp, min.probes, max.gap, cuts[i], two.sides, doJoin=FALSE))
fdr[i,] <- c(cuts[i],neg,pos,min(neg/pos,1))
if (verbose) message(".", appendLF = FALSE)
}
if (verbose) message("")
as.data.frame(fdr)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.