R/doseResponseCurve.R

Defines functions doseResponseCurve

Documented in doseResponseCurve

#' Plot drug response curve of a given drug and a given cell for a list of
#'   rSets (objects of the RadioSet class).
#'
#' Given a list of RadioSets, the function will plot the drug_response curve,
#'   for a given drug/cell pair. The y axis of the plot is the viability
#'   percentage and x axis is the log transformed Ds. If more than one rSet is
#'   provided, a light gray area would show the common concentration range
#'   between rSets. User can ask for type of sensitivity measurment to be shown
#'   in the plot legend. The user can also provide a list of their own Ds and
#'   viability values, as in the examples below, and it will be treated as
#'   experiments equivalent to values coming from a pset. The names of the
#'   concentration list determine the legend labels.
#'
#' @examples
#' doseResponseCurve(Ds=list("Experiment 1" = c(0, 2, 4, 6)),
#'   SFs=list("Experiment 1" = c(1,.6,.4,.2)), plot.type="Both")
#'
#' @param rad.type [string] The type(s) of radiation dosage to be
#'   plotted. If the plot is desirable for more than one radioset, A unique drug
#'   id should be provided.
#' @param cellline [string] A cell line name for which the radiation response
#'   curve should be plotted. If the plot is desirable for more than one
#'   radioset, a unique cell id should be provided.
#' @param rSets [list] a list of RadioSet objects, for which the function
#'   should plot the curves.
#' @param Ds,SFs [list] A list of Doses and SFs to plot, the function assumes
#'   that Ds[[i]] is plotted against SFs[[i]]. The names of the D list are used
#'   to create the legend labels
#' @param legends.label [vector] A vector of sensitivity measurment types which
#'   could be any combination of  ic50_published, auc_published, auc_recomputed
#'   and auc_recomputed_star. A legend will be displayed on the top right of the
#'   plot which each line of the legend is the values of requested sensitivity
#'   measerments for one of the requested rSets. If this parameter is missed no
#'   legend would be provided for the plot.
#' @param ylim [vector] A vector of two numerical values to be used as ylim of
#'   the plot. If this parameter would be missed c(0,100) would be used as the
#'   ylim of the plot.
#' @param xlim [vector] A vector of two numerical values to be used as xlim of
#'   the plot. If this parameter would be missed the minimum and maximum
#'   concentrations between all the rSets would be used as plot xlim.
#' @param mycol [vector] A vector with the same lenght of the rSets parameter
#'   which will determine the color of the curve for the pharmaco sets. If this
#'   parameter is missed default colors from Rcolorbrewer package will be used
#'   as curves color.
#' @param plot.type [character] Plot type which can be the actual one ("Actual")
#'   or the one fitted by logl logistic regression ("Fitted") or both of them
#'   ("Both"). If this parameter is missed by default actual curve is plotted.
#' @param summarize.replicates [character] If this parameter is set to true
#'   replicates are summarized and replicates are plotted individually otherwise
#' @param title [character] The title of the graph. If no title is provided,
#'   then it defaults to Drug':'Cell Line'.
#' @param lwd [numeric] The line width to plot with
#' @param cex [numeric] The cex parameter passed to plot
#' @param cex.main [numeric] The cex.main parameter passed to plot, controls the
#'   size of the titles
#' @param legend.loc And argument passable to xy.coords for the position to
#'   place the legend.
#' @param trunc [bool] Should the viability values be truncated to lie in
#'   [0-100] before doing the fitting
#' @param verbose [boolean] Should warning messages about the data passed in be
#'   printed?
#'
#' @return Plots to the active graphics device and returns and invisible NULL.
#'
#' @import RColorBrewer
#' @importFrom graphics plot rect axis points lines legend
#' @importFrom grDevices rgb
#' @importFrom magicaxis magaxis
#' @importFrom matrixStats colMedians colMeans2
#'
#' @export
doseResponseCurve <-
function(rad.type = "radiation",
         cellline,
         rSets=list(),
         Ds=list(),
         SFs=list(),
         trunc=TRUE,
         legends.label = c("alpha", "beta","rsquared"),
         ylim=c(0,100),
         xlim, mycol,
         title,
         plot.type=c("Fitted","Actual", "Both"),
         summarize.replicates=TRUE,
         lwd = 1,
         cex = 0.7,
         cex.main = 0.9,
         legend.loc = "topright",
         verbose=TRUE)
{
  if(!missing(rSets)){
    if (!is(rSets, "list")) {
      if (!is(rSets, "RadioSet")) {
        temp <- name(rSets)
        rSets <- list(rSets)
        names(rSets) <- temp
      } else {
        stop("Type of rSets parameter should be either a rSet or a list of rSets.")
      }
    }
  }
  if(!all(legends.label %in% c("alpha", "beta","rsquared"))){
    stop(paste("Only", paste(c("'alpha'", "'beta'","'rsquared'"), collapse = ", "), "implemented for legend labels.", split = " "))
  }
  ##FIXME::
  if(!missing(rSets) && (missing(cellline))){
    stop("If you pass in a rSet then drug and cellline must be set") }

    if(!missing(Ds)){
      if(missing(SFs)){

        stop("Please pass in the Survival Fractions to Plot with the Doses.")

      }
      if (!is(Ds, "list")) {
        if (mode(Ds) == "numeric") {
          if(mode(SFs) != "numeric"){
            stop("Passed in 1 vector of Doses but the Survival Fractions are not numeric!")
          }
          Ds <- list(Ds)
          SFs <- list(SFs)
          names(Ds) <- "Exp1"
          names(SFs) <- "Exp1"
        } else {
          stop("Mode of Doses parameter should be either numeric or a list of numeric vectors")
        }
      } else{
        if(length(SFs)!= length(Ds)){
          stop("The number of D and SF vectors passed in differs")
        }
        if(is.null(names(Ds))){
          names(Ds) <- paste("Exp", seq_along(Ds))
        }
        for(i in seq_along(Ds)){

          if (mode(Ds[[i]]) == "numeric") {
            if(mode(SFs[[i]])!="numeric"){
              stop(sprintf("Ds[[%d]] are numeric but the SFs[[%d]] are not numeric!",i,i))
            }
          } else {
            stop(sprintf("Mode of Ds[[%d]] parameter should be numeric",i))
          }
        }

      }
    }

    common.range.star <- FALSE

    if (missing(plot.type)) {
      plot.type <- "Actual"
    }

    doses <- list(); responses <- list(); legend.values <- list(); j <- 0; rSetNames <- list()
    if(!missing(rSets)){
      for(i in seq_along(rSets)) {
        exp_i <- which(sensitivityInfo(rSets[[i]])[ ,"cellid"] == cellline & sensitivityInfo(rSets[[i]])[ ,"radiation.type"] == rad.type)
        if(length(exp_i) > 0) {
          if (summarize.replicates) {
            rSetNames[[i]] <- name(rSets[[i]])
            if (length(exp_i) == 1) {
              drug.responses <- as.data.frame(cbind("Dose"=as.numeric(as.vector(sensitivityRaw(rSets[[i]])[exp_i, , "Dose"])),
                "Viability" = as.numeric(as.vector(sensitivityRaw(rSets[[i]])[exp_i, , "Viability"])), stringsAsFactors=FALSE))
              drug.responses <- drug.responses[complete.cases(drug.responses), ]
            }else{
              drug.responses <- as.data.frame(cbind("Dose"=colMedians(sensitivityRaw(rSets[[i]])[exp_i, , "Dose"], na.rm=TRUE),
                "Viability"=colMedians(sensitivityRaw(rSets[[i]])[exp_i, , "Viability"], na.rm=TRUE)))
              drug.responses <- drug.responses[complete.cases(drug.responses), ]
            }
            doses[[i]] <- drug.responses$Dose
            responses[[i]] <- drug.responses$Viability
            names(doses[[i]]) <- names(responses[[i]]) <- seq_along(doses[[i]])
            if (!missing(legends.label)) {
              if(length(legends.label)>0) {
                linQuad_params <- linearQuadraticModel(D = doses[[i]], SF = responses[[i]])
                if(any(grepl("alpha", x=legends.label))){
                  legend.values[[i]] <- paste(legend.values[i][[1]],sprintf("%s = %s", "alpha", round(linQuad_params[1], digits=2)), sep=", ")
                }
                if(any(grepl("beta", x=legends.label))){
                  legend.values[[i]] <- paste(legend.values[i][[1]],sprintf("%s = %s", "beta", round(linQuad_params[2], digits=2)), sep=", ")
                }
                if(any(grepl("rsquared", x=legends.label))){
                  legend.values[[i]] <- paste(legend.values[i][[1]],sprintf("%s = %s", "R^2", round(CoreGx::.examineGOF(linQuad_params)[1], digits=2)), sep=", ")
                }
              } else {
                legend.values[[i]] <- ""
              }
            }
          } else {
            for (exp in exp_i) {
              j <- j + 1
              rSetNames[[j]] <- name(rSets[[i]])

              drug.responses <- as.data.frame(cbind("Dose"=as.numeric(as.vector(sensitivityRaw(rSets[[i]])[exp, , "Dose"])),
                "Viability"=as.numeric(as.vector(sensitivityRaw(rSets[[i]])[exp, , "Viability"])), stringsAsFactors=FALSE))
              drug.responses <- drug.responses[complete.cases(drug.responses), ]
              doses[[j]] <- drug.responses$Dose
              responses[[j]] <- drug.responses$Viability
              names(doses[[j]]) <- names(responses[[j]]) <- seq_along(doses[[j]])
              if (!missing(legends.label)) {
                if(length(legends.label)>0){
                  linQuad_params <- linearQuadraticModel(D = doses2[[i]], SF = responses2[[i]])
                  if(any(grepl("alpha", x=legends.label))){
                    legend.values2[[i]] <- paste(legend.values2[i][[1]],sprintf("%s = %s", "alpha", round(linQuad_params[1], digits=2)), sep=", ")
                  }
                  if(any(grepl("beta", x=legends.label))){
                    legend.values2[[i]] <- paste(legend.values2[i][[1]],sprintf("%s = %s", "beta", round(linQuad_params[2], digits=2)), sep=", ")
                  }
                  if(any(grepl("rsquared", x=legends.label))){
                    legend.values2[[i]] <- paste(legend.values2[i][[1]],sprintf("%s = %s", "R^2", round(CoreGx::.examineGOF(linQuad_params)[1], digits=2)), sep=", ")
                  }
                }
              } else {
                tt <- unlist(strsplit(rownames(sensitivityInfo(rSets[[i]]))[exp], split="_"))
                if (tt[1] == "radiation.type") {
                  legend.values[[j]] <- tt[2]
                }else{
                  legend.values[[j]] <- rownames(sensitivityInfo(rSets[[i]]))[exp]
                }
              }
            }
          }
        } else {
          warning("The cell line and drug combo were not tested together. Aborting function.")
          return()
        }
      }
    }
    if(!missing(Ds)){
      doses2 <- list(); responses2 <- list(); legend.values2 <- list(); j <- 0; rSetNames2 <- list();
      for (i in seq_along(Ds)){
        doses2[[i]] <- Ds[[i]]
        responses2[[i]] <- SFs[[i]]
        if(length(legends.label)>0){
          linQuad_params <- linearQuadraticModel(D = doses2[[i]], SF = responses2[[i]])
          if(any(grepl("alpha", x=legends.label))){
            legend.values2[[i]] <- paste(legend.values2[i][[1]],sprintf("%s = %s", "alpha", round(linQuad_params[1], digits=2)), sep=", ")
          }
          if(any(grepl("beta", x=legends.label))){
            legend.values2[[i]] <- paste(legend.values2[i][[1]],sprintf("%s = %s", "beta", round(linQuad_params[2], digits=2)), sep=", ")
          }
          if(any(grepl("rsquared", x=legends.label))){
            legend.values2[[i]] <- paste(legend.values2[i][[1]],sprintf("%s = %s", "R^2", round(CoreGx::.examineGOF(linQuad_params)[1], digits=2)), sep=", ")
          }
        } else{ legend.values2[[i]] <- ""}

        rSetNames2[[i]] <- names(Ds)[[i]]
      }
      doses <- c(doses, doses2)
      responses <- c(responses, responses2)
      legend.values <- c(legend.values, legend.values2)
      rSetNames <- c(rSetNames, rSetNames2)
    }

    if (missing(mycol)) {
      mycol <- RColorBrewer::brewer.pal(n=7, name="Set1")
    }

    dose.range <- c(10^100 , 0)
    viability.range <- c(1 , 1)
    for(i in seq_along(doses)) {
      dose.range <- c(0, max(dose.range[2], max(doses[[i]], na.rm=TRUE), na.rm=TRUE))
      viability.range <- c(min(viability.range[1], min(responses[[i]], na.rm=TRUE), na.rm=TRUE), 1)
    }
    x1 <- 10 ^ 10; x2 <- 0

    if (!missing(xlim)) {
      dose.range <- xlim
    }
    if (!missing(ylim)) {
      viability.range <- ylim
    }
    if(missing(title)){
      if (length(rSets)){
        title <- sprintf("Radiation Response Curve for: %s", cellline)
      } else {
        title <- "Radiation Response Curve"
      }
    }
    plot(NA, xlab="Dose (Gy)", ylab="Survival Fraction", axes =FALSE, main=title, log="y", ylim=viability.range, xlim=dose.range, cex=cex, cex.main=cex.main)
    magicaxis::magaxis(side=seq_len(2), frame.plot=TRUE, tcl=-.3, majorn=c(5,5), minorn=c(5,3), label=c(TRUE,FALSE))
    if(max(viability.range)/min(viability.range)<50){
      ticks <- magicaxis::maglab(viability.range, exptext = TRUE)
    } else {
      ticks <- magicaxis::maglab(viability.range, exptext = TRUE, log=TRUE)
    }
    ticks$exp <- unlist(lapply(ticks$exp, function(x)
      return(as.expression(bquote(10^ .(round(log10(eval(x)), 2)))))))
    axis(2, at=ticks$labat,labels=ticks$exp)
    legends <- NULL
    legends.col <- NULL

    for (i in seq_along(doses)) {
      points(doses[[i]],responses[[i]],pch=20,col = mycol[i], cex=cex)

      switch(plot.type , "Actual"={
        lines(doses[[i]], responses[[i]], lty=1, lwd=lwd, col=mycol[i])
      }, "Fitted"= {
        linQuad_params <- linearQuadraticModel(D = doses[[i]], SF = responses[[i]])
        x_vals <- CoreGx::.getSupportVec(c(0,doses[[i]]))
        lines(x_vals, (.linearQuadratic(x_vals, pars=linQuad_params, SF_as_log=FALSE)),lty=1, lwd=lwd, col=mycol[i])
      },"Both"={
        linQuad_params <- linearQuadraticModel(D = doses[[i]], SF = responses[[i]])
        x_vals <- CoreGx::.getSupportVec(c(0,doses[[i]]))
        lines(x_vals, (.linearQuadratic(x_vals, pars=linQuad_params, SF_as_log=FALSE)),lty=1, lwd=lwd, col=mycol[i])
      })
      if (length(legend.values)){
              legends<- c(legends, sprintf("%s%s", rSetNames[[i]], legend.values[[i]]))
      } else {
                      legends<- c(legends, sprintf("%s", rSetNames[[i]]))
      }
      legends.col <-  c(legends.col, mycol[i])
    }

    legend(legend.loc, legend=legends, col=legends.col, bty="n", cex=cex, pch=c(15,15))
    return(invisible(NULL))
  }

Try the RadioGx package in your browser

Any scripts or data that you put into this service are public.

RadioGx documentation built on Nov. 8, 2020, 8:21 p.m.