Nothing
# TODO: Add comment
#
# Author: stravsmi
###############################################################################
# TODO: Add comment
#' Extract an MS/MS spectrum from MS2 TIC
#'
#' Extract an MS/MS spectrum or multiple MS/MS spectra based on the TIC of the MS2 and precursor mass, picking
#' the most intense MS2 scan. Can be used, for example, to get a suitable MS2 from direct infusion data which was
#' collected with purely targeted MS2 without MS1.
#'
#' Note that this is not a precise function and only really makes sense in direct infusion and if
#' the precursor is really known, because MS2 precursor data is only "roughly" accurate (to 2 dp).
#' The regular \code{findMsMsHR} functions confirm the exact mass of the precursor in the MS1 scan.
#'
#' @aliases findMsMsHR.ticMS2
#' @param msRaw The mzR raw file
#' @param mz Mass to find
#' @param limit.coarse Allowed mass deviation for scan precursor (in m/z values)
#' @param limit.fine Unused here, but present for interface compatiblity with findMsMsHR
#' @param rtLimits Unused here, but present for interface compatiblity with findMsMsHR
#' @param maxCount Maximal number of spectra to return
#' @param headerCache Cached results of header(msRaw), either to speed up the operations or to operate with
#' preselected header() data
#' @param fillPrecursorScan Unused here, but present for interface compatiblity with findMsMsHR
#' @param deprofile Whether deprofiling should take place, and what method should be
#' used (cf. \code{\link{deprofile}})
#' @param trace Either \code{"ms2tic"} or \code{"ms2basepeak"}: Which intensity trace to use - can be either the
#' TIC of the MS2 or the basepeak intensity of the MS2.
#' @return a list of "spectrum sets" as defined in \code{\link{findMsMsHR}}, sorted
#' by decreasing precursor intensity.
#'
#' @author stravsmi
#' @export
findMsMsHR.ticms2 <- function(msRaw, mz, limit.coarse, limit.fine, rtLimits = NA, maxCount = NA,
headerCache = NULL, fillPrecursorScan = FALSE,
deprofile = getOption("RMassBank")$deprofile, trace = "ms2tic")
{
# if(!is.na(rtLimits))
# {
# eic <- subset(eic, rt >= rtLimits[[1]] & rt <= rtLimits[[2]])
# }
if(!is.null(headerCache))
headerData <- headerCache
else
headerData <- as.data.frame(header(msRaw))
# find MS2 tic or MS2 base peak chromatogram
#return(data.frame(rt = rt, intensity = pks_t, scan = scan))
if(trace == "ms2tic")
eic <- headerData[,c("retentionTime", "totIonCurrent", "acquisitionNum")]
else if(trace == "ms2basepeak")
eic <- headerData[,c("retentionTime", "basePeakIntensity", "acquisitionNum")]
else
stop("Select a valid trace parameter (ms2tic or ms2basepeak).")
colnames(eic) <- c("rt", "intensity", "scan")
# Find MS2 spectra with precursors which are in the allowed
# scan filter (coarse limit) range
findValidPrecursors <- headerData[
which(headerData$precursorMZ > (mz - limit.coarse) &
headerData$precursorMZ < (mz + limit.coarse)),]
# Find the precursors for the found spectra
# Crop the "EIC" to the valid scans
eic <- eic[eic$scan %in% findValidPrecursors$acquisitionNum,]
# Order by intensity, descending
eic <- eic[order(eic$intensity, decreasing=TRUE),]
if(nrow(eic) == 0)
return(list(list(foundOK = FALSE)))
if(!is.na(maxCount))
{
spectraCount <- min(maxCount, nrow(eic))
eic <- eic[1:spectraCount,]
}
# Construct all spectra groups in decreasing intensity order
spectra <- lapply(eic$scan, function(masterScan)
{
ret <- list()
ret$parentHeader <- matrix(0, ncol = 20, nrow = 1)
rownames(ret$parentHeader) <- 1
colnames(ret$parentHeader) <- c("seqNum", "acquisitionNum", "msLevel", "peaksCount", "totIonCurrent", "retentionTime", "basepeakMZ",
"basePeakIntensity", "collisionEnergy", "ionisationEnergy", "lowMZ", "highMZ", "precursorScanNum",
"precursorMZ", "precursorCharge", "precursorIntensity", "mergedScan", "mergedResultScanNum",
"mergedResultStartScanNum", "mergedResultEndScanNum")
ret$parentHeader[1,1:3] <- 1
##Write nothing in the parents if there is no MS1-spec
ret$parentHeader[1,4:20] <- 0
ret$parentHeader[1,6] <- NA
childHeaders <- headerData[
which(headerData$acquisitionNum == masterScan
& headerData$precursorMZ > (mz - limit.coarse)
& headerData$precursorMZ < (mz + limit.coarse)), ,
drop = FALSE]
childScans <- childHeaders$acquisitionNum
ret$parentScan <- min(childScans)-1
ret$parentHeader[1,1:3] <- min(childScans)-1
ret$parentPeak <- matrix(nrow = 1, ncol = 2)
colnames(ret$parentPeak) <- c("mz","int")
ret$parentPeak[1,] <- c(mz,100)
msmsPeaks <- lapply(childHeaders$seqNum, function(scan)
{
pks <- mzR::peaks(msRaw, scan)
if(!is.na(deprofile))
{
pks <- deprofile.scan(
pks, method = deprofile, noise = NA, colnames = FALSE
)
}
colnames(pks) <- c("mz","int")
return(pks)
}
)
return(list(
foundOK = TRUE,
parentScan = ret$parentScan,
parentHeader = as.data.frame(ret$parentHeader),
childScans = childScans,
childHeaders= childHeaders,
parentPeak=ret$parentPeak,
peaks=msmsPeaks
#xset=xset#,
#msRaw=msRaw
))
})
names(spectra) <- eic$acquisitionNum
return(spectra)
}
#
# Author: stravsmi
###############################################################################
msmsRead.ticms2 <- function(w, filetable = NULL, files = NULL, cpdids = NULL,
readMethod, mode, confirmMode = FALSE, useRtLimit = TRUE,
Args = NULL, settings = getOption("RMassBank"), progressbar = "progressBarHook", MSe = FALSE){
##Read the files and cpdids according to the definition
##All cases are silently accepted, as long as they can be handled according to one definition
if(is.null(filetable)){
##If no filetable is supplied, filenames must be named explicitly
if(is.null(files))
stop("Please supply the files")
##Assign the filenames to the workspace
w@files <- unlist(files)
##If no filetable is supplied, cpdids must be delivered explicitly or implicitly within the filenames
if(is.null(cpdids)){
splitfn <- strsplit(files,"_")
splitsfn <- sapply(splitfn, function(x) x[length(x)-1])
if(suppressWarnings(any(is.na(as.numeric(splitsfn)[1]))))
stop("Please supply the cpdids corresponding to the files in the filetable or the filenames")
cpdids <- splitsfn
}
} else{
##If a filetable is supplied read it
tab <- read.csv(filetable, stringsAsFactors = FALSE)
w@files <- tab[,"Files"]
cpdids <- tab[,"ID"]
}
##If there's more cpdids than filenames or the other way around, then abort
if(length(w@files) != length(cpdids)){
stop("There are a different number of cpdids than files")
}
if(!(readMethod %in% c("mzR","peaklist","xcms","ticms2"))){
stop("The supplied method does not exist")
}
if(!all(file.exists(w@files))){
stop("The supplied files don't exist")
}
##This should work
if(readMethod == "mzR"){
##Progressbar
nLen <- length(w@files)
nProg <- 0
pb <- do.call(progressbar, list(object=NULL, value=0, min=0, max=nLen))
count <- 1
w@specs <- lapply(w@files, function(fileName){
spec <- findMsMsHR(fileName, cpdids[count], mode, confirmMode, useRtLimit,
ppmFine = settings$findMsMsRawSettings$ppmFine,
mzCoarse = settings$findMsMsRawSettings$mzCoarse,
fillPrecursorScan = settings$findMsMsRawSettings$fillPrecursorScan,
rtMargin = settings$rtMargin,
deprofile = settings$deprofile)
## Progress:
nProg <<- nProg + 1
pb <- do.call(progressbar, list(object=pb, value= nProg))
##Counting the index of cpdids
count <<- count + 1
return(spec)
})
names(w@specs) <- basename(as.character(w@files))
return(w)
}
##This should work
if(readMethod == "ticms2"){
##Progressbar
nLen <- length(w@files)
nProg <- 0
pb <- do.call(progressbar, list(object=NULL, value=0, min=0, max=nLen))
count <- 1
w@specs <- lapply(w@files, function(fileName){
spec <- findMsMsHR.ticms2.file(fileName, cpdids[count], mode, confirmMode, useRtLimit,
ppmFine = settings$findMsMsRawSettings$ppmFine,
mzCoarse = settings$findMsMsRawSettings$mzCoarse,
fillPrecursorScan = settings$findMsMsRawSettings$fillPrecursorScan,
rtMargin = settings$rtMargin,
deprofile = settings$deprofile)
## Progress:
nProg <<- nProg + 1
pb <- do.call(progressbar, list(object=pb, value= nProg))
##Counting the index of cpdids
count <<- count + 1
return(spec)
})
names(w@specs) <- basename(as.character(w@files))
return(w)
}
##Peaklist-readmethod
if(readMethod == "peaklist"){
w <- createSpecsFromPeaklists(w, cpdids, filenames=w@files, mode=mode)
names(w@specs) <- basename(as.character(w@files))
return(w)
}
##xcms-readmethod
if(readMethod == "xcms"){
ufiles <- unique(w@files)
uIDs <- unique(cpdids)
##Routine for the case of multiple cpdIDs per file and multiple files per cpdID
dummySpecs <- list()
w@specs <- list()
for(i in 1:length(ufiles)){ ##Create list
dummySpecs[[i]] <- newMsmsWorkspace()
dummySpecs[[i]]@specs <- list()
FileIDs <- cpdids[which(w@files == ufiles[i])]
metaSpec <- findMsMsHRperxcms.direct(ufiles[i], FileIDs, mode=mode, findPeaksArgs=Args, MSe = MSe)
for(j in 1:length(FileIDs)){
dummySpecs[[i]]@specs[[length(dummySpecs[[i]]@specs)+1]] <- metaSpec[[j]]
}
}
if(length(dummySpecs) > 1){
for(j in 2:length(dummySpecs)){
dummySpecs[[1]] <- c.msmsWSspecs(dummySpecs[[1]],dummySpecs[[j]])
}
}
##You need as many names as there were different IDs
##And the Names and IDs have to go together in some way
##Find out Names that make sense: (cpdID with Name of File that uses cpdID)
FNames <- vector()
for(i in uIDs){
nindex <- min(which(i == cpdids))
FNames <- c(FNames,paste(w@files[nindex],"_",cpdids[nindex],sep=""))
}
w@specs <- dummySpecs[[1]]@specs
names(w@specs) <- basename(as.character(FNames))
w@files <- basename(as.character(FNames))
return(w)
}
}
findMsMsHR.ticms2.d <- function(msRaw, cpdID, mode = "pH", confirmMode = 0, useRtLimit = TRUE,
ppmFine = getOption("RMassBank")$findMsMsRawSettings$ppmFine,
mzCoarse = getOption("RMassBank")$findMsMsRawSettings$mzCoarse,
fillPrecursorScan = getOption("RMassBank")$findMsMsRawSettings$fillPrecursorScan,
rtMargin = getOption("RMassBank")$rtMargin,
deprofile = getOption("RMassBank")$deprofile,
headerCache = NA)
{
# for finding the peak RT: use the gauss-fitted centwave peak
# (centroid data converted with TOPP is necessary. save as
# mzData, since this is correctly read :P)
#xset <- xcmsSet(fileName, method="centWave",ppm=5, fitgauss=TRUE)
# find cpd m/z
mzLimits <- findMz(cpdID, mode)
mz <- mzLimits$mzCenter
limit.fine <- ppm(mz, ppmFine, p=TRUE)
if(!useRtLimit)
rtLimits <- NA
else
{
dbRt <- findRt(cpdID)
rtLimits <- c(dbRt$RT - rtMargin, dbRt$RT + rtMargin) * 60
}
spectra <- findMsMsHR.ticms2(msRaw, mz, mzCoarse, limit.fine, rtLimits, confirmMode + 1,headerCache
,fillPrecursorScan, deprofile)
# check whether a) spectrum was found and b) enough spectra were found
if(length(spectra) < (confirmMode + 1))
sp <- list(foundOK = FALSE)
else
sp <- spectra[[confirmMode + 1]]
sp$mz <- mzLimits
sp$id <- cpdID
sp$formula <- findFormula(cpdID)
return(sp)
}
findMsMsHR.ticms2.file <- function(fileName, cpdID, mode="pH",confirmMode =0, useRtLimit = TRUE,
ppmFine = getOption("RMassBank")$findMsMsRawSettings$ppmFine,
mzCoarse = getOption("RMassBank")$findMsMsRawSettings$mzCoarse,
fillPrecursorScan = getOption("RMassBank")$findMsMsRawSettings$fillPrecursorScan,
rtMargin = getOption("RMassBank")$rtMargin,
deprofile = getOption("RMassBank")$deprofile)
{
# access data directly for finding the MS/MS data. This is done using
# mzR.
msRaw <- openMSfile(fileName)
ret <- findMsMsHR.ticms2.d(msRaw, cpdID, mode, confirmMode, useRtLimit, ppmFine, mzCoarse, fillPrecursorScan,
rtMargin, deprofile)
mzR::close(msRaw)
return(ret)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.