R/F_LR_nb_Jac.R

Defines functions LR_nb_Jac

Documented in LR_nb_Jac

#' A function that returns the Jacobian of the likelihood ratio
#'
#' @param Alpha a vector of length d + k*(2+(k-1)/2),
#' the environmental gradient plus the lagrangian multipliers
#' @param X the n-by-p count matrix
#' @param CC a n-by-d covariate vector
#' @param responseFun a character string indicating
#' the type of response function
#' @param psi a scalar, an importance parameter
#' @param NB_params Starting values for the NB_params
#' @param NB_params_noLab Starting values for the NB_params without label
#' @param d an integer, the number of covariate parameters
#' @param alphaK a matrix of environmental gradients of lower dimensions
#' @param k an integer, the current dimension
#' @param centMat a nLambda1s-by-d centering matrix
#' @param nLambda an integer, number of lagrangian multipliers
#' @param nLambda1s an integer, number of centering restrictions
#' @param thetaMat a matrix of size n-by-p with estimated dispersion parameters
#' @param muMarg an n-by-p offset matrix
#' @param n an integer, the number of rows of X
#' @param ncols a scalar, the number of columns of X
#' @param preFabMat a prefabricated matrix
#' @param envGradEst a character string,
#'  indicating how the environmental gradient should be fitted.
#'  'LR' using the likelihood-ratio criterion,
#'  or 'ML' a full maximum likelihood solution
#' @param allowMissingness A boolean, are missing values present
#' @param naId The numeric index of the missing values in X
#' @param ... Further arguments passed on to other functions
#'
#' @return A symmetric matrix, the evaluated Jacobian
LR_nb_Jac = function(Alpha, X, CC, responseFun = c("linear", "quadratic",
    "nonparametric", "dynamic"), psi, NB_params, NB_params_noLab, d, alphaK,
    k, centMat, nLambda, nLambda1s, thetaMat, muMarg, n, ncols, preFabMat,
    envGradEst, allowMissingness, naId, ...) {
    did = seq_len(d)
    # Extract the parameters
    alpha = Alpha[did]
    lambda1s = Alpha[d + seq_len(nLambda1s)]
    # Multiple centering requirements now!
    lambda2 = Alpha[d + nLambda1s + 1]
    lambda3 = if (k == 1) {
        0
    } else {
        Alpha[(d + nLambda1s + 2):(d + nLambda)]
    }
    sampleScore = CC %*% alpha
    # A linear combination of the environmental variables yields the
    # sampleScore
    design = buildDesign(sampleScore, responseFun)

    mu = muMarg * exp(design %*% NB_params * psi)
    if(allowMissingness){
        X = correctXMissingness(X, mu, allowMissingness, naId)
        preFabMat = 1 + X/thetaMat
    }
    if (envGradEst == "LR")
        mu0 = muMarg * c(exp(design %*% NB_params_noLab * psi))

    Jac = matrix(0, nrow = d + nLambda, ncol = d + nLambda)
    # dLag²/dalpha_{yk}dlambda_{1k}
    Jac[(d + seq_len(nLambda1s)), did] = centMat

    Jac[did, d + nLambda1s + 1] = 2 * alpha
    responseFun = switch(responseFun, dynamic = "quadratic", responseFun)

    if (responseFun == "linear") {
        tmp = rowMultiply(preFabMat * mu/(1 + mu/thetaMat)^2, NB_params[2,
            ]^2)
        if (envGradEst == "LR") {
            tmp0 = preFabMat * mu0/(1 + mu0/thetaMat)^2 * NB_params_noLab[2]^2
        }
    } else if (responseFun == "quadratic") {
        tmp = preFabMat * mu/(1 + mu/thetaMat)^2
        if (envGradEst == "LR") {
            tmp0 = preFabMat * mu0/(1 + mu0/thetaMat)^2
        }
    }
    # dLag²/ds_{ik}dlambda_{3kk'}
    if (k > 1) {
        Jac[(d + nLambda1s + 2):(d + nLambda), did] = alphaK
    }

    # Symmetrize
    Jac = Jac + t(Jac)
    cSam = c(sampleScore)
    cSam2 = cSam^2

    Jac[did, did] = switch(responseFun, linear = -psi^2 *
                    (colSums(tensor(vapply(did,
        FUN.VALUE = tmp, function(x) {
            CC[, x] * switch(envGradEst, LR = (tmp - tmp0), ML = tmp)
        }), CC, 1, 1))), quadratic = switch(envGradEst, LR =
        colSums((tensor(vapply(did,
        FUN.VALUE = tmp, function(x) {
            CC[, x] * (-psi^2 * (tmp * (matrix(NB_params[2, ]^2, n, ncols,
                byrow = TRUE) + 4 * outer(cSam, NB_params[2, ] * NB_params[3,
                ]) + 4 * outer(cSam2, NB_params[3, ]^2)) - tmp0 *
                (NB_params_noLab[2] +
                NB_params_noLab[3] * 2 * cSam)^2) + 2 * psi * (rowMultiply((X -
                mu)/(1 + mu/thetaMat), NB_params[3, ]) - (X - mu0)/(1 +
                mu0/thetaMat) * NB_params_noLab[3]))
        }), CC, 1, 1))), ML = colSums(tensor(vapply(did, FUN.VALUE = tmp,
        function(x) {
            CC[, x] * (-psi^2 * (tmp * (matrix(NB_params[2, ]^2, n, ncols,
                byrow = TRUE) + 4 * outer(cSam, NB_params[2, ] * NB_params[3,
                ]) + 4 * outer(cSam2, NB_params[3, ]^2)) + 2 * psi *
                (rowMultiply((X -
                mu)/(1 + mu/thetaMat), NB_params[3, ]))))
        }), CC, 1, 1))))

    diag(Jac)[did] = diag(Jac)[did] + 2 * lambda2  #Correct the diagonal
    Jac
}

Try the RCM package in your browser

Any scripts or data that you put into this service are public.

RCM documentation built on Nov. 8, 2020, 5:22 p.m.