pairadise-FUN: pairadise

Description Usage Arguments Details Value Examples

Description

Primary function of the PAIRADISE package. Analyzes matched pairs for differences in isoform expression. Uses parallel processing to speed up computation.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
pairadise(
  pdat,
  nIter = 100,
  tol = 10^(-2),
  pseudocount = 0,
  seed = 12321,
  equal.variance = FALSE,
  numCluster = 2,
  BPPARAM = MulticoreParam(numCluster)
)

Arguments

pdat

A PDseDataSet object

nIter

Positive integer. Specifies the maximum number of iterations of the optimization algorithm allowed. Default is nIter = 100

tol

Positive number. Specifies the tolerance level for terminating the optimization algorithm, defined as the difference in log-likelihood ratios between iterations. Default is tol = 10^(-2)

pseudocount

Positive number. Specifies a value for a pseudocount added to each count at the beginning of the analysis. Default is pseudocount = 0

seed

An integer to set seed.

equal.variance

Are the group variances assumed equal? Default value is FALSE.

numCluster

Number of clusters to use for parallel computing.

BPPARAM

parallel parameters from package BiocParallel.

Details

This is the primary function of the PAIRADISE package that implements the PAIRADISE algorithm.

Value

A PDseDataSet object contains outputs from PAIRADISE algorithm.

Examples

1
2
3
4
5
6
7
8
9
#############################
## Example: Simulated data ##
#############################

set.seed(12345)
data("sample_dataset")
pdat <- PDseDataSetFromMat(sample_dataset)
pdat <- pairadise(pdat, numCluster =4)
results(pdat)

PAIRADISE documentation built on Nov. 8, 2020, 8:22 p.m.