Nothing
biodetection.dat <- function(input, factor = NULL, k = 0) {
if (inherits(input,"eSet") == FALSE)
stop("Error. The input data must be an eSet object\n")
if (any(!is.na(featureData(input)@data$Biotype)) == FALSE)
stop ("No biological classification was provided.\nPlease run addData() function to add
this information\n")
if (!is.null(assayData(input)$exprs)) {
dat <- as.matrix(assayData(input)$exprs)
mysamples = colnames(assayData(input)$exprs)
} else {
dat <- as.matrix(assayData(input)$counts)
mysamples = colnames(assayData(input)$counts)
}
numgenes = nrow(dat)
if (is.null(factor)) { # per sample
cat("Biotypes detection is to be computed for:\n")
print(colnames(dat))
biotablas = vector("list", length = NCOL(dat))
names(biotablas) = colnames(dat)
} else { # per condition
mifactor = as.factor(pData(input)[,factor])
niveles = levels(mifactor)
cat("Biotypes detection is to be computed for:\n")
print(niveles)
biotablas = vector("list", length = length(niveles))
names(biotablas) = niveles
dat = sapply(niveles, function (k) rowSums(as.matrix(dat[, mifactor == k])))
}
infobio <- as.character(featureData(input)@data$Biotype)
genome <- 100*table(infobio)/sum(table(infobio))
ordre <- order(genome, decreasing = TRUE)
for (i in 1:length(biotablas)) {
detect <- dat[,i] > k
perdet1 <- genome*table(infobio, detect)[names(genome),"TRUE"]/
table(infobio)[names(genome)]
perdet2 <- 100*table(infobio, detect)[names(genome),"TRUE"] /
sum(table(infobio, detect)[,"TRUE"])
biotablas[[i]] <- as.matrix(rbind(perdet1[ordre], perdet2[ordre]))
rownames(biotablas[[i]]) <- c("detectionVSgenome", "detectionVSsample")
}
mybiotable = list("genome" = genome[ordre], "biotables" = biotablas, "genomesize" = numgenes)
mybiotable
}
#############################################################################################
#############################################################################################
#############################################################################################
biodetection.plot <- function(dat, samples = c(1,2), plottype = c("persample", "comparison"),
toplot = "protein_coding", toreport = FALSE,...) {
mypar = par(no.readonly = TRUE)
plottype = match.arg(plottype)
if (length(samples) > 2) {
stop("ERROR: This function cannot generate plots for more than 2 samples.\n
Please, use it as many times as needed to generate the plots for all your samples.\n")
}
if (is.numeric(samples)) samples = names(dat$biotables)[samples]
biotable1 <- rbind(dat$genome, dat$biotables[[samples[1]]], rep(0, length(dat$genome)))
# Computing ylim for left and right axis
if (ncol(biotable1) >= 3) {
ymaxL <- ceiling(max(biotable1[,1:3], na.rm = TRUE))
ymaxR <- max(biotable1[,-c(1:3)], na.rm = TRUE)
} else {
ymaxL <- ceiling(max(biotable1, na.rm = TRUE))
ymaxR = 0
}
if (length(samples) == 2) {
biotable2 <- rbind(dat$genome, dat$biotables[[samples[2]]], rep(0, length(dat$genome)))
if (ncol(biotable2) >= 3) {
ymax2 <- ceiling(max(biotable2[,1:3], na.rm = TRUE))
ymax2sin <- max(biotable2[,-c(1:3)], na.rm = TRUE)
ymaxR <- ceiling(max(ymaxR, ymax2sin))
} else {
ymax2 <- ceiling(max(biotable2, na.rm = TRUE))
}
ymaxL = max(ymaxL, ymax2)
}
# Rescaling biotables (datos2)
if (length(samples) == 2) {
if (ncol(biotable2) >= 3) biotable2[,-c(1:3)] <- biotable2[,-c(1:3)]*ymaxL/ymaxR
}
# Rescaling biotables (datos1)
if (ncol(biotable1) >= 3) biotable1[,-c(1:3)] <- biotable1[,-c(1:3)]*ymaxL/ymaxR
## PLOTS
if (length(samples) == 1) { # Plot (1 sample) - 2 scales
par(mar = c(11, 4, 2, 2))
barplot(biotable1[c(1,3),], main = samples[1],
xlab = NULL, ylab = "%features", axis.lty = 1, legend = FALSE,
beside = TRUE, col = c("grey", 2), las = 2,
ylim = c(0, ymaxL), border = c("grey", 2))
barplot(biotable1[c(2,4),], main = samples[1],
xlab = NULL, ylab = "%features", axis.lty = 1, legend = FALSE,
beside = TRUE, col = c(2, 1), las = 2, density = 30,
ylim = c(0, ymaxL), border = 2, add = TRUE)
if (ymaxR > 0) { # if number of biotypes >= 3 so we have left and right axis
axis(side=4, at = pretty(c(0,ymaxL), n = 5),
labels = round(pretty(c(0,ymaxL), n = 5)*ymaxR/ymaxL, 1))
abline(v = 9.5, col = 3, lwd = 2, lty = 2)
}
legend(x = "topright", bty = "n", horiz = FALSE,
fill = c("grey", 2, 2), density = c(NA,30,NA),
border = c("grey", 2, 2),
legend = c("% in genome", "detected", "% in sample"))
} else { # Plot (2 samples)
par(mar = c(11, 4, 2, 2))
if (plottype == "persample") { ### A plot for each sample separately
# Datos1
barplot(biotable1[c(1,3),], main = samples[1],
xlab = NULL, ylab = "%features", axis.lty = 1, legend = FALSE,
beside = TRUE, col = c("grey", 2), las = 2,
ylim = c(0, ymaxL), border = c("grey", 2))
barplot(biotable1[c(2,4),], main = samples[1],
xlab = NULL, ylab = "%features", axis.lty = 1, legend = FALSE,
beside = TRUE, col = c(2, 1), las = 2, density = 30,
ylim = c(0, ymaxL), border = 2, add = TRUE)
if (ymaxR > 0) { # if number of biotypes >= 3 so we have left and right axis
axis(side=4, at = pretty(c(0,ymaxL), n = 5),
labels = round(pretty(c(0,ymaxL), n = 5)*ymaxR/ymaxL, 1))
abline(v = 9.5, col = 3, lwd = 2, lty = 2)
}
legend(x = "topright", bty = "n", horiz = FALSE,
fill = c("grey", 2, 2), density = c(NA,30,NA), border = c("grey", 2, 2),
legend = c("% in genome", "detected", "% in sample"))
# Datos2
barplot(biotable2[c(1,3),], main = samples[2],
xlab = NULL, ylab = "%features", axis.lty = 1, legend = FALSE,
beside = TRUE, col = c("grey", 4), las = 2,
ylim = c(0, ymaxL), border = c("grey", 4))
barplot(biotable2[c(2,4),], main = samples[2],
xlab = NULL, ylab = "%features", axis.lty = 1, legend = FALSE,
beside = TRUE, col = c(4, 1), las = 2, density = 30,
ylim = c(0, ymaxL), border = 4, add = TRUE)
if (ymaxR > 0) { # if number of biotypes >= 3 so we have left and right axis
axis(side=4, at = pretty(c(0,ymaxL), n = 5),
labels = round(pretty(c(0,ymaxL), n = 5)*ymaxR/ymaxL, 1))
abline(v = 9.5, col = 3, lwd = 2, lty = 2)
}
legend(x = "topright", bty = "n", horiz = FALSE,
fill = c("grey", 4, 4), density = c(NA,30,NA),
border = c("grey", 4, 4),
legend = c("% in genome", "detected", "% in sample"))
}
if (plottype == "comparison") { ## A plot comparing two samples with regard to genome and for % in sample
lefttable = rbind(100*dat$biotables[[samples[1]]][1,]/dat$genome, 100*dat$biotables[[samples[2]]][1,]/dat$genome)
righttable = rbind(dat$biotables[[samples[1]]][2,], dat$biotables[[samples[2]]][2,])
if (length(toplot) > 1) {
toplot = toplot[1]
print("WARNING: More than one biotype was provided, the proportion test will only by applied to the first biotype.")
}
if ((toplot != 1) && (toplot != "global")) {
numgenes = dat$genomesize
myx = round(righttable[,toplot]*numgenes/100, 0)
mytest = prop.test(x = myx, n = rep(numgenes, 2), alternative = "two.sided")
if (is.numeric(toplot)) toplot = colnames(righttable)[toplot]
}
asumar = colSums(righttable)
asumar = which(asumar < 0.25)
if (length(asumar) > 1) {
righttable = cbind(righttable[,-asumar], rowSums(righttable[,asumar]))
colnames(righttable)[ncol(righttable)] = "Others"
}
# Detection in the genome
bbb = barplot(lefttable, main = "Biotype detection over genome total",
xlab = NULL, ylab = "% detected features", axis.lty = 1, legend = FALSE, cex.names = 0.8,
beside = TRUE, col = c(2,4), las = 2, density = 80, border = c(2,4), ylim = c(0,100))
bbb = colSums(bbb)/2
lines(bbb, dat$genome, pch = 20, type = "o", lwd = 2)
# %detection in the sample
barplot(righttable, main = "Relative biotype abundance in sample",
xlab = NULL, ylab = "Relative % biotypes", axis.lty = 1, legend = FALSE,
beside = TRUE, col = c(2, 4), las = 2, border = c(2,4))
legend(x = "topright", bty = "n", horiz = FALSE, pch = c(15,15,20), lwd = c(NA,NA,1), legend = c(samples, "% in genome"),
col = c(2,4,1))
if ((toplot != 1) && (toplot != "global")) {
print(paste("Percentage of", toplot, "biotype in each sample:"))
names(mytest$estimate) = samples
print(round(mytest$estimate*100, 4))
print(paste("Confidence interval at 95% for the difference of percentages:", samples[1], "-", samples[2]))
print(round(mytest$conf.int[1:2]*100, 4))
if (mytest$p.value < 0.05) {
print(paste("The percentage of this biotype is significantly DIFFERENT for these two samples (p-value =",
signif(mytest$p.value, 4), ")."))
} else {
print(paste("The percentage of this biotype is NOT significantly different for these two samples (p-value =",
signif(mytest$p.value, 4), ")."))
}
}
}
}
# Reset with the default values
if (!toreport) par(mypar)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.