tool.cluster: Hierarchical clustering of nodes

Description Usage Arguments Details Value Author(s) References Examples

View source: R/cle.LS.R

Description

tool.cluster performs agglomerative hierarchical clustering for nodes (genes)

Usage

1
tool.cluster(edges, cutoff = NULL)

Arguments

edges

edge (weight) list among two group, whose overlapping information (overlapping ratio based on shared entries of two groups, number of members in both group) had been assesed previously

cutoff

cutting level of dendrogram for hierarchical clustering

Details

tool.cluster takes overlapping information between two groups, produces distance matrix based on 1-strength(overlap) ratio between two groups, and apply agglomerative hierarchical clustering based on the distance matrix.

Value

res

data list including clustering results:

CLUSTER: cluster label
NODE: item (node) name

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
## read the coexpr module file as an example:
moddata <- tool.read(system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics"))

## let us cluster the first 10 modules in the module file:
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
## Find clusters.
rmax = 0.33
edges <- tool.overlap(items=moddata$GENE, groups=moddata$MODULE)
clustdat <- tool.cluster(edges, cutoff=rmax)
nclust <- length(unique(clustdat$CLUSTER))
nnodes <- length(unique(clustdat$NODE))

Mergeomics documentation built on Nov. 8, 2020, 6:58 p.m.