Nothing
context("Probe Analysis")
library(minfiData)
library(minfi)
miniset <- MsetEx[1:10, ]
set <- ratioConvert(mapToGenome(miniset))
test_that("DiffMean", {
probes <- runDiffMeanAnalysis(set = set, model = ~ status)
expect_match(class(probes), "ResultSet")
probes <- runDiffMeanAnalysis(set = set, model = ~ status, resultSet = FALSE)
expect_match(class(probes), "MArrayLM")
expect_equal(as.integer(nrow(set)), nrow(probes))
beta <- getBeta(set)
model <- model.matrix(~ status, pData(set))
probes <- runDiffMeanAnalysis(set = beta, model = model)
expect_match(class(probes), "ResultSet")
})
test_that("DiffVar", {
probes <- runDiffVarAnalysis(set = set, model = ~ status)
expect_match(class(probes), "ResultSet")
probes <- runDiffVarAnalysis(set = set, model = ~ status, resultSet = FALSE)
expect_match(class(probes), "MArrayLM")
expect_equal(as.integer(nrow(set)), nrow(probes))
beta <- getBeta(set)
model <- model.matrix(~ status, pData(set))
probes <- runDiffVarAnalysis(set = beta, model = model)
expect_match(class(probes), "ResultSet")
})
eset <- ExpressionSet(matrix(rnorm(1000), ncol = 10))
pData(eset) <- data.frame(sex = rep(c("H", "M"), each = 5))
test_that("Probe Analysis works with ExpressionSet", {
probes <- runDiffMeanAnalysis(set = eset, model = ~sex)
expect_match(class(probes), "ResultSet")
probes <- runDiffMeanAnalysis(set = eset, model = ~ sex, resultSet = FALSE)
expect_match(class(probes), "MArrayLM")
expect_equal(as.integer(nrow(eset)), nrow(probes))
probes <- runDiffVarAnalysis(set = eset, model = ~sex)
expect_match(class(probes), "ResultSet")
probes <- runDiffVarAnalysis(set = eset, model = ~ sex, resultSet = FALSE)
expect_match(class(probes), "MArrayLM")
expect_equal(as.integer(nrow(eset)), nrow(probes))
})
#
# test_that("Empty variables", {
# emptyset <- new(Class = "MethylationSet")
# emptyeset <- new(Class = "ExpressionSet")
# emptymodel <- matrix(ncol = 0, nrow = 0)
# expect_error(DiffMeanAnalysis(set = emptyset, model = emptymodel), "The set is empty.")
# expect_error(DiffMeanAnalysis(set = set, model = emptymodel), "The model matrix is empty.")
# expect_error(DiffMeanAnalysis(set = emptyset, model = model), "The set is empty.")
# expect_error(DiffMeanAnalysis(set = emptyeset, model = model), "The set is empty.")
# })
#
# test_that("Wrong variables", {
# expect_error(DiffMeanAnalysis(set = set, model= model[1:2, ]),
# "The number of samples is different in the set and in the model")
# expect_error(DiffMeanAnalysis(set = set, model= model, method = character()),
# "method should be one of \"ls\", \"robust\"")
# expect_error(DiffMeanAnalysis(set = set, model= model, method = "character"),
# "method should be one of \"ls\", \"robust\"")
# expect_error(DiffMeanAnalysis(set = set, model= model, method = c("ls", "robust")),
# "method should be one of \"ls\", \"robust\"")
# expect_warning(DiffMeanAnalysis(set = set, model= model, max_iterations = -1),
# "max_iterations must be a numeric greater than 1. The default value will be used.")
# expect_warning(DiffMeanAnalysis(set = set, model= model, max_iterations = "1"),
# "max_iterations must be a numeric greater than 1. The default value will be used.")
# expect_warning(DiffMeanAnalysis(set = set, model= model, max_iterations = numeric()),
# "max_iterations must be a numeric greater than 1. The default value will be used.")
# })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.