Nothing
#' Plot a longitudinal tree inferred by LACE.
#' @title longitudinal.tree.plot
#'
#' @examples
#' data(inference)
#' clone_labels = c("ARPC2","PRAME","HNRNPC","COL1A2","RPL5","CCT8")
#' longitudinal.tree.plot(inference = inference,
#' labels = "clones",
#' clone_labels = clone_labels,
#' legend_position = "topleft")
#'
#' @param inference Results of the inference by LACE.
#' @param rem_unseen_leafs If TRUE (default) remove all the leafs that have never been observed (prevalence = 0 in each time point)
#' @param show_plot If TRUE (default) output the longitudinal tree to the current graphical device.
#' @param filename Specify the name of the file where to save the longitudinal tree. Dot or graphml formats are supported and are chosen based on the extenction of the filename (.dot or .xml).
#' @param labels_show Specify which type of label should be placed on the tree; options are,
#' "mutations": parental edges are labeled with the acquired mutation between the two nodes (genotypes);
#' "clones": nodes (genotypes) are labeled with their last acquired mutation;
#' "both": either nodes and edges are labeled as specified above;
#' "none": no labels will show on the longitudinal tree.
#' @param clone_labels Character vector that specifies the name of the nodes (genotypes). If it is NULL (default), nodes will be labeled as specified by "label" parameter.
#' @param show_prev If TRUE (default) add to clones label the correspongind prevalance.
#' @param label.cex Specify the size of the labels.
#' @param size Specify size of the nodes. The final area is proportional with the node prevalence.
#' @param size2 Specify the size of the second dimension of the nodes. If NULL (default), it is set equal to "size".
#' @param tk_plot If TRUE, uses tkplot function from igraph library to plot an interactive tree. Default is FALSE.
#' @param tp_lines If TRUE (defaul) the function draws lines between timepoints.
#' @param tp_mark If TRUE (defaul) the function draws different colored area under the nodes in different time points.
#' @param tp_mark_alpha Specify the alpha value of the area drawed when tp_mark = TRUE.
#' @param legend If TRUE (default) a legend will be displayed on the plot.
#' @param legend_position Specify the legend position.
#' @param label_offset Move the mutation labels horizontally (default = 4)
#' @param legend_cex Specify size of the legend text.
#' @return An igraph object g with the longitudinal tree inferred by LACE.
#' @export longitudinal.tree.plot
#' @import graphics
#' @import grDevices
#' @import igraph
#' @import RColorBrewer
#' @import utils
#'
longitudinal.tree.plot <- function( inference,
rem_unseen_leafs = TRUE,
show_plot = TRUE,
filename = "lg_output.xml",
labels_show = "mutations",
clone_labels = NULL,
show_prev = TRUE,
label.cex = 1,
size = 500,
size2 = NULL,
tk_plot = FALSE,
tp_lines = TRUE,
tp_mark = TRUE,
tp_mark_alpha = 0.5,
legend = TRUE,
legend_position = "topright",
label_offset = 4,
legend_cex = 0.8 ) {
if(is.null(size2)) {
size2 <- size
}
adjMatrix_base <- as.adj.matrix.unsorted(inference$B, root = TRUE)
M_leafs <- which(apply(X = adjMatrix_base, MARGIN = 1, FUN = sum)==0)
Clone_Mut <- sapply(inference$clones_summary, function(x){tail(x,1)}, USE.NAMES = T)
C_leafs <- Clone_Mut[match(names(M_leafs), Clone_Mut)]
if(rem_unseen_leafs == TRUE) {
uns_cl_mut <- C_leafs[which(inference$clones_prevalence[match(names(C_leafs),rownames(inference$clones_prevalence)), "Total"] == 0)]
while(length(uns_cl_mut) > 0) {
# Delete each clone and corresponding mutation from B, clone_prevalence and clone_summary
del_mut <- as.character(uns_cl_mut)
del_clone <- names(uns_cl_mut)
inference$B <- inference$B[!(rownames(inference$B) %in% del_clone), !(colnames(inference$B) %in% del_mut)]
inference$clones_prevalence <- inference$clones_prevalence[!(rownames(inference$clones_prevalence) %in% del_clone),]
inference$clones_summary <- inference$clones_summary[!(names(inference$clones_summary) %in% del_clone)]
# Repeate
adjMatrix_base <- as.adj.matrix.unsorted(inference$B, root = TRUE)
M_leafs <- which(apply(X = adjMatrix_base, MARGIN = 1, FUN = sum)==0)
Clone_Mut <- sapply(inference$clones_summary, function(x){tail(x,1)}, USE.NAMES = T)
C_leafs <- Clone_Mut[match(names(M_leafs), Clone_Mut)]
uns_cl_mut <- C_leafs[which(inference$clones_prevalence[match(names(C_leafs),rownames(inference$clones_prevalence)), "Total"] == 0)]
}
}
cl_vertex <- data.frame(prevalance = as.vector(inference$clones_prevalence[,-ncol(inference$clones_prevalence)]))
cl_vertex$clone <- rep(c(0:(nrow(inference$clones_prevalence)-1)),ncol(inference$clones_prevalence)-1)
cl_vertex$TP <- rep(1:(ncol(inference$clones_prevalence)-1), each = nrow(inference$clones_prevalence))
cl_vertex$last_mutation <- rep(c("Root",Clone_Mut), ncol(inference$clones_prevalence)-1)
if(!is.null(clone_labels)) {
if(length(clone_labels)!=length(inference$clones_summary)) {
warning("Label number is different from the number of clones.")
cl_vertex$label <- ""
}
else {
cl_vertex$label <- rep(c("Root",clone_labels), ncol(inference$clones_prevalence)-1)
}
} else if((labels_show == "clones" || labels_show == "both") && labels_show != "none") {
cl_vertex$label <- rep(c("Root",names(inference$clones_summary)), ncol(inference$clones_prevalence)-1)
} else {
cl_vertex$label <- ""
cl_vertex$label[cl_vertex$last_mutation == "Root"] <- "Root"
}
cl_vertex$branch <- NA
cl_vertex$branch_level <- 0
cl_vertex$names <- paste0("T", cl_vertex$TP, "-", cl_vertex$last_mutation)
# Names must be the first column
cl_vertex <- cl_vertex[,order(ncol(cl_vertex):1)]
cl_edges <- data.frame(stringsAsFactors = FALSE)
# Processing persistent relations
for(c in unique(cl_vertex$clone)) {
t <- 1
while(t <= max(cl_vertex$TP)) {
from_cc <- cl_vertex$names[cl_vertex$clone == c & cl_vertex$TP == t]
if(cl_vertex$prevalance[cl_vertex$names == from_cc] <= 0) {
t <- t + 1
}
else {
nt <- t + 1
while(nt <= max(cl_vertex$TP)) {
if(max(cl_vertex$prevalance[cl_vertex$clone == c & cl_vertex$TP >= nt]) > 0) {
to_cc <- cl_vertex$names[cl_vertex$clone == c & cl_vertex$TP == nt]
cl_edges <- rbind(cl_edges, data.frame(from = from_cc, to = to_cc, type = "persistence", extincion = FALSE))
from_cc <- to_cc
}
else {
to_cc <- cl_vertex$names[cl_vertex$clone == c & cl_vertex$TP == nt]
cl_edges <- rbind(cl_edges, data.frame(from = from_cc, to = to_cc, type = "persistence", extincion = TRUE))
break;
}
nt <- nt + 1
}
t <- nt
}
}
}
# Processing parental relations
cl_edges_parental <- data.frame(stringsAsFactors = FALSE)
# Start from one leaf of M_leafs
for(cs_id in M_leafs) {
curTP <- max(cl_vertex$TP)
cp_id <- which(adjMatrix_base[,cs_id]==1)
while(length(cp_id)>0) {
# Finding first time point in which appear son clone
TPs <- cl_vertex$TP[cl_vertex$clone == (cs_id-1) & cl_vertex$prevalance > 0 & cl_vertex$TP <= curTP]
if(length(TPs)==0) {
cs_tp <- curTP
} else {
cs_tp <- min(TPs)
}
# Finding the time point in which parental clone were present most close to the current time point
TPs <- cl_vertex$TP[cl_vertex$clone == (cp_id-1) & cl_vertex$prevalance > 0 & cl_vertex$TP <= cs_tp]
if(length(TPs) == 0) {
# If the parental clone has ever prevalence == 0 -> I use the same time point of the son clone
cp_tp = cs_tp
} else {
cp_tp <- max(TPs)
}
from_cc <- cl_vertex$names[cl_vertex$clone == (cp_id-1) & cl_vertex$TP == cp_tp]
to_cc <- cl_vertex$names[cl_vertex$clone == (cs_id-1) & cl_vertex$TP == cs_tp]
mut <- cl_vertex$last_mutation[cl_vertex$clone == (cs_id-1) & cl_vertex$TP == cs_tp]
cl_edges_parental <- rbind(cl_edges_parental, data.frame(from = from_cc,
to = to_cc,
type = "parental",
extincion = FALSE,
stringsAsFactors = FALSE))
# Now son clone becomes parental clone
curTP <- cp_tp
cs_id <- cp_id
cp_id <- which(adjMatrix_base[,cs_id]==1)
}
}
# Fix duplicate parental relation (keep earliest) ones
cl_edges_parental$from_cl <- cl_vertex$clone[match(cl_edges_parental$from, cl_vertex$names)]
cl_edges_parental$to_cl <- cl_vertex$clone[match(cl_edges_parental$to, cl_vertex$names)]
cl_edges_parental$to_tp <- cl_vertex$TP[match(cl_edges_parental$to, cl_vertex$names)]
cl_edges_parental <- cl_edges_parental[order(cl_edges_parental$to_tp),]
cl_edges_parental <- cl_edges_parental[!duplicated(cl_edges_parental[,c("from_cl", "to_cl")], fromLast = F), c("from","to","type","extincion")]
cl_edges <- rbind(cl_edges, cl_edges_parental)
# Fixing missing persistence relations
fixing_clones <- data.frame(names = unique(as.character(cl_edges$from)))
fixing_clones$clones <- cl_vertex$clone[match(fixing_clones$names,cl_vertex$names)]
fixing_clones$TP <- cl_vertex$TP[match(fixing_clones$names,cl_vertex$names)]
fixing_clones <- fixing_clones[duplicated(fixing_clones$clones) | duplicated(fixing_clones$clones, fromLast = T),]
fixing_clones <- fixing_clones[order(fixing_clones$TP),]
for(fxc in unique(fixing_clones$clones)){
fixing_clones_i <- fixing_clones[fixing_clones$clones == fxc,]
for(i in 1:(nrow(fixing_clones_i)-1)) {
if(sum(cl_edges$from == fixing_clones_i$names[i] & cl_edges$to == fixing_clones_i$names[i+1] & cl_edges$type == "persistence") == 0) {
cl_edges <- rbind(cl_edges, data.frame(from = fixing_clones_i$names[i],
to = fixing_clones_i$names[i+1],
type = "persistence",
extincion = FALSE,
stringsAsFactors = FALSE)
)
}
}
}
# Setting edges labels
cl_edges$label <- ""
cl_edges$name <- ""
for(i in 1:nrow(cl_edges)) {
if(cl_edges$type[i] == "persistence") {
cl_edges$label[i] <- ""
cl_edges$name[i] <- ""
}
else {
cl_edges$label[i] <- cl_vertex$last_mutation[cl_vertex$names == cl_edges$to[i]]
cl_edges$name[i] <- cl_edges$label[i]
}
}
if(labels_show == "clones" || labels_show == "none") {
cl_edges$label <- ""
}
# Setting the size of the clone circles
cl_vertex <- cl_vertex[(cl_vertex$names %in% cl_edges$from | cl_vertex$names %in% cl_edges$to),]
cl_vertex$size <- 2*sqrt(size*cl_vertex$prevalance/pi)
cl_vertex$size2 <- 2*sqrt(size2*cl_vertex$prevalance/pi)
cl_vertex$shape <- "circle"
# Setting the size of the extincted clones
cl_vertex$size[cl_vertex$names %in% as.character(cl_edges$to[cl_edges$extincion])] <- 2*sqrt(size*0.01)
cl_vertex$size2[cl_vertex$names %in% as.character(cl_edges$to[cl_edges$extincion])] <- 2*sqrt(size2*0.01)
cl_vertex$shape[cl_vertex$names %in% as.character(cl_edges$to[cl_edges$extincion])] <- "vrectangle"
cl_vertex$label.dist <- -1
cl_vertex$label.degree <- 0
# Removing labels from persistent clones
idx_persistent <- sapply(cl_vertex$names,
function(x){
mut_type <- cl_edges$type[cl_edges$to == x]
!("parental" %in% mut_type) & length(mut_type) > 0
})
cl_vertex$label[idx_persistent] <- ""
if(is.null(clone_labels) && labels_show != "clones" && labels_show != "both") {
cl_vertex$label.dist <- -1
} else {
cl_vertex$label.dist[idx_persistent] <- -1
}
# Add prevalence
if(show_prev) {
num_str <- sub("^(-?)0.", "\\1.", sprintf("%.2f", cl_vertex$prevalance))
cl_vertex$label <- paste0(cl_vertex$label, " (", num_str , ")")
cl_vertex$label[cl_vertex$prevalance == 0.0] <- ""
}
# Defining extincted clones as 'ext.'
cl_vertex$extincion <- 0
cl_vertex$extincion[cl_vertex$names %in% as.character(cl_edges$to[cl_edges$extincion])] <- 1
cl_vertex$label[cl_vertex$extincion == 1] <- ""
if((labels_show == "clones" || labels_show == "both") && labels_show != "none") {
cl_vertex$label[cl_vertex$extincion == 1] <- "ext."
cl_vertex$label.dist[cl_vertex$extincion == 1] <- 1.2
}
cl_edges$lty <- ifelse(cl_edges$type == "persistence", yes = 2, no = 1)
g <- igraph::graph_from_data_frame(cl_edges, directed=TRUE, vertices=cl_vertex)
parental_clones <- which(apply(X = adjMatrix_base, MARGIN = 2, function(x) sum(x == 1))==0)
c_br <- 1
c_level <- 1
while(length(parental_clones)>0) {
c_son <- which(adjMatrix_base[parental_clones[1],]==1)
cl_vertex$branch[cl_vertex$last_mutation == colnames(adjMatrix_base)[parental_clones[1]]] <- c_br
cl_vertex$branch_level[cl_vertex$last_mutation == colnames(adjMatrix_base)[parental_clones[1]]] <- c_level
if(length(c_son)==0) {
parental_clones <- parental_clones[-1]
c_br <- c_br + 1
c_level <- 1
}
else if(length(c_son) > 1) {
c_br <- c_br + 1
c_level <- 1
parental_clones <- c(parental_clones[-1], c_son)
}
else {
c_level <- c_level + 1
parental_clones <- c(c_son, parental_clones[-1])
}
}
# Initialize palette
color_palette <- data.frame(base_color = c("#FF0000","#00FF00","#0000FF","#FF7F00","#8B00FF","#FFFF00","#2E2B5F"), stringsAsFactors = FALSE)
color_palette$bright <- NA
color_palette$dark <- NA
for(i in 1:nrow(color_palette)) {
cp <- colorRampPalette(c("#FFFFFF",color_palette$base_color[i],"#000000"), interpolate = "spline")(100)
color_palette$bright[i] <- cp[15]
color_palette$dark[i] <- cp[85]
}
for(br in unique(cl_vertex$branch[cl_vertex$last_mutation != "Root"])) {
n_levels <- max(cl_vertex$branch_level[cl_vertex$last_mutation != "Root"])
min_level <- 6
if(n_levels < min_level) {
n_levels = min_level
}
base_colors <- br - 1
base_colors <- (base_colors - floor(base_colors/nrow(color_palette))*nrow(color_palette)) + 1
cl_vertex$color[cl_vertex$branch == br] <- colorRampPalette(c(color_palette$bright[base_colors],
color_palette$dark[base_colors]),
interpolate = "linear")(n_levels)[cl_vertex$branch_level[cl_vertex$branch == br]]
}
cl_vertex$color[cl_vertex$names %in% as.character(cl_edges$to[cl_edges$extincion])] <- "#C0C0C0"
cl_vertex$color[cl_vertex$last_mutation == "Root"] <- "#DDDDDD"
igraph::vertex_attr(graph = g, name = "branch") <- cl_vertex$branch
igraph::vertex_attr(graph = g, name = "branch_level") <- cl_vertex$branch_level
igraph::vertex_attr(graph = g, name = "color") <- cl_vertex$color
igraph::delete_edge_attr(graph = g, name = "extincion")
cl_vertex$coord.x <- NA
cl_vertex$coord.y <- NA
g <- igraph::graph_from_data_frame(cl_edges, directed=TRUE, vertices=cl_vertex)
adjMatrix_overall <- igraph::get.adjacency(g, sparse = F, attr = "type", names = TRUE)
adjMatrix_overall[which(adjMatrix_overall=="")] <- 0
adjMatrix_overall[which(adjMatrix_overall=="persistence")] <- 2
adjMatrix_overall[which(adjMatrix_overall=="parental")] <- 1
storage.mode(adjMatrix_overall) <- "integer"
# Count total level number in each time point
timepoints <- unique(cl_vertex$TP)
mut_TP <- c()
for(tp in timepoints) {
col_in <- which(colnames(adjMatrix_base) %in% cl_edges$name[cl_edges$to %in% cl_vertex$names[cl_vertex$TP == tp]])
if(length(col_in) < 2) {
mut_TP <- c(mut_TP, 0)
} else {
adjMatrix_base_tp <- adjMatrix_base[col_in, col_in]
idx_anc_c <- which(colSums(adjMatrix_base_tp) == 0)
max_deep_tp = -1
for(idx in idx_anc_c){
descend = list(
adjM = adjMatrix_base_tp,
l_path = 0,
ind_lPath = 1,
mut_list = NA,
row_v = idx
)
deep_tmp <- recursiveDescend(descend)$max_deep
max_deep_tp <- max(max_deep_tp,deep_tmp)
}
mut_TP <- c(mut_TP, max_deep_tp)
}
}
mut_TP <- cumsum(mut_TP) + 1:length(mut_TP)
names(mut_TP) <- timepoints
cl_df <- list(cl_vertex = cl_vertex, cl_edges = cl_edges)
idx_next_v <- which(colSums(adjMatrix_overall != 0) == 0)
# Root
Xc = 0
Yc = 0
# Start building
cl_df <- recursiveLongitudinalLayout(idx_Vc=idx_next_v,
Xc=Xc,
Yc=Yc,
cl_df=cl_df,
adjMatrix_base=adjMatrix_base,
adjMatrix_overall=adjMatrix_overall,
mut_TP=mut_TP,
labels_show=labels_show,
label_offset=label_offset)
cl_vertex <- cl_df$cl_vertex[order(cl_df$cl_vertex$TP, cl_df$cl_vertex$coord.y),]
cl_edges <- cl_df$cl_edges
g_mod <- igraph::graph_from_data_frame(d = cl_edges, directed=TRUE, vertices=cl_vertex)
time_point_grp <- split(cl_vertex$names[cl_vertex$last_mutation!="Root"], cl_vertex$TP[cl_vertex$last_mutation!="Root"])
ratio = par("din")[1] / par("din")[2]
g_mod$layout <- igraph::norm_coords(as.matrix(cl_vertex[,c("coord.x", "coord.y")]), xmin = -1*ratio, xmax = 1*ratio, ymin = 1, ymax = -1)
if(tk_plot) {
tkplot(g_mod,
rescale = FALSE,
vertex.label.dist = 0,
vertex.label.cex = label.cex,
edge.label.cex = label.cex,
edge.arrow.size = 0,
)
} else if(show_plot) {
if(tp_mark) {
plot(g_mod,
mark.groups = time_point_grp,
mark.shape = 1,
mark.border = 0,
mark.col = paste0(RColorBrewer::brewer.pal(9, 'Pastel1'), as.hexmode(round(tp_mark_alpha*255))),
rescale = FALSE,
vertex.label.cex = label.cex,
edge.label.cex = label.cex,
edge.arrow.size = 0
)
} else {
plot(g_mod,
rescale = FALSE,
vertex.label.cex = label.cex,
edge.label.cex = label.cex,
edge.arrow.size = 0
)
}
if(legend && tp_mark) {
legend(x = legend_position,
legend = paste0("Time Point ", names(time_point_grp)),
fill = RColorBrewer::brewer.pal(9, 'Pastel1')[1:length(time_point_grp)],
cex = legend_cex)
}
if(tp_lines) {
TPs <- sort(unique(cl_vertex$TP))
min_x <- min(g_mod$layout[,1], na.rm = T)
min_x <- ifelse(test = min_x < 0, yes = min_x*1.3, no = min_x*0.7)
for(i in 1:(length(TPs))) {
if(i < length(TPs)) {
range_Y_curr <- range(g_mod$layout[cl_vertex$TP == TPs[i],2], na.rm = T)
range_Y_next<- range(g_mod$layout[cl_vertex$TP == TPs[i+1],2], na.rm = T)
pos_l <- mean(c(range_Y_curr[1],range_Y_next[2]))
abline(h = pos_l)
}
pos_text <- mean(range(g_mod$layout[cl_vertex$TP == TPs[i],2], na.rm = T))
text(min_x, pos_text, paste0('TP: ', TPs[i]))
}
}
}
if(endsWith(x = filename,suffix = ".dot")) {
igraph::write_graph(graph = g, file = filename, format = "dot")
} else if(endsWith(x = filename,suffix = ".xml")) {
igraph::write_graph(graph = g, file = filename, format = "graphml")
} else if(filename != "" || !is.null(filename) || !is.na(filename)) {
warning("Filename is not valid. Only dot or graphml format are currently supported.")
}
return(g)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.