Nothing
#' @export
ihw <- function(...)
{
UseMethod( "ihw" )
}
#' ihw: Main function for Independent Hypothesis Weighting
#'
#' Given a vector of p-values, a vector of covariates which are independent of the p-values under the null hypothesis and
#' a nominal significance level alpha, IHW learns multiple testing weights and then applies the weighted Benjamini Hochberg
#' (or Bonferroni) procedure.
#'
#'
#' @param pvalues Numeric vector of unadjusted p-values.
#' @param covariates Vector which contains the one-dimensional covariates (independent under the H0 of the p-value)
#' for each test. Can be numeric or a factor. (If numeric it will be converted into factor by binning.)
#' @param alpha Numeric, sets the nominal level for FDR control.
#' @param covariate_type "ordinal" or "nominal" (i.e. whether covariates can be sorted in increasing order or not)
#' @param nbins Integer, number of groups into which p-values will be split based on covariate. Use "auto" for
#' automatic selection of the number of bins. Only applicable when covariates is not a factor.
#' @param m_groups Integer vector of length equal to the number of levels of the covariates (only to be specified
#' when the latter is a factor/categorical). Each entry corresponds to the number of hypotheses to be tested in
#' each group (stratum). This argument needs to be given when the complete vector of p-values is
#' not available, but only p-values below a given threshold, for example because of memory reasons.
#' See the vignette for additional details and an example of how this principle can be applied with
#' numerical covariates.
#' @param folds Integer vector or NULL. Pre-specify assignment of hypotheses into folds.
#' @param quiet Boolean, if False a lot of messages are printed during the fitting stages.
#' @param nfolds Number of folds into which the p-values will be split for the pre-validation procedure
#' @param nfolds_internal Within each fold, a second (nested) layer of cross-validation can be conducted to choose a good
#' regularization parameter. This parameter controls the number of nested folds.
#' @param nsplits_internal Integer, how many times to repeat the nfolds_internal splitting. Can lead to better regularization
#' parameter selection but makes ihw a lot slower.
#' @param lambdas Numeric vector which defines the grid of possible regularization parameters.
#' Use "auto" for automatic selection.
#' @param seed Integer or NULL. Split of hypotheses into folds is done randomly. To have the output of the function be reproducible,
#' the seed of the random number generator is set to this value at the start of the function. Use NULL if you don't want to set the seed.
#' @param distrib_estimator Character ("grenander" or "ECDF"). Only use this if you know what you are doing. ECDF with nfolds > 1
#' or lp_solver == "lpsymphony" will in general be excessively slow, except for very small problems.
#' @param lp_solver Character ("lpsymphony" or "gurobi"). Internally, IHW solves a sequence of linear programs, which
#' can be solved with either of these solvers.
#' @param adjustment_type Character ("BH" or "bonferroni") depending on whether you want to control FDR or FWER.
#' @param censoring Boolean, if True (default is False) the IHWc procedure is run instead of IHW.
#' @param censoring_level Numeric, threshold for IHWc procedure, defaults to alpha.
#' @param null_proportion Boolean, if True (default is False), a modified version of Storey's estimator
#' is used within each bin to estimate the proportion of null hypotheses.
#' @param null_proportion_level Numeric, threshold for Storey's pi0 estimation procedure, defaults to censoring_level
#' @param return_internal Returns a lower level representation of the output (only useful for debugging purposes).
#' @param ... Arguments passed to internal functions.
#'
#' @return A ihwResult object.
#' @seealso ihwResult, plot,ihwResult-method, ihw.DESeqResults
#'
#' @examples
#'
#' save.seed <- .Random.seed; set.seed(1)
#' X <- runif(20000, min=0, max=2.5) # covariate
#' H <- rbinom(20000,1,0.1) # hypothesis true or false
#' Z <- rnorm(20000, H*X) # Z-score
#' .Random.seed <- save.seed
#' pvalue <- 1-pnorm(Z) # pvalue
#'
#' ihw_fdr <- ihw(pvalue, X, .1) # Standard IHW for FDR control
#' ihw_fwer <- ihw(pvalue, X, .1, adjustment_type = "bonferroni") # FWER control
#
#' table(H[adj_pvalues(ihw_fdr) <= 0.1] == 0) #how many false rejections?
#' table(H[adj_pvalues(ihw_fwer) <= 0.1] == 0)
#'
#'
#' @export
#' @aliases ihw
#'
ihw.default <- function(pvalues, covariates, alpha,
covariate_type = "ordinal",
nbins = "auto",
m_groups = NULL,
folds = NULL,
quiet =TRUE ,
nfolds = 5L,
nfolds_internal = 5L,
nsplits_internal=1L,
lambdas = "auto",
seed = 1L,
distrib_estimator = "grenander",
lp_solver="lpsymphony",
adjustment_type = "BH",
censoring = FALSE,
censoring_level = alpha,
null_proportion = FALSE,
null_proportion_level = censoring_level,
return_internal = FALSE,
...){
# This function essentially wraps the lower level function ihw_internal
# e.g. takes care of NAs, sorts pvalues and then
# returns a nice ihw object
if (!adjustment_type %in% c("BH","bonferroni")){
stop("IHW currently only works with BH or bonferroni types of multiple testing corrections")
}
if (adjustment_type == "bonferroni" & distrib_estimator != "grenander"){
stop("For Bonferroni-like FWER adjustment currently only the grenander estimator is supported.")
}
if (is.null(folds)){
nfolds <- as.integer(nfolds)
} else {
nfolds <- length(unique(folds))
}
nfolds_internal <- as.integer(nfolds_internal)
if (nfolds==1){
message("Using only 1 fold! Only use this if you want to learn the weights, but NEVER for testing!")
}
# gracefully handle NAs
nna <- !is.na(pvalues)
if (all(nna)){
nna <- TRUE
}
# filter our p-values
pvalues <- pvalues[nna]
covariates <- covariates[nna]
weights <- rep(NA, length(pvalues))
if (any(is.na(covariates))){
stop("Covariates corresponding to non-NA p-values should never be NA. Aborting.")
}
if (covariate_type =="ordinal" & is.numeric(covariates)){
if (!is.null(m_groups)){
stop("m_groups should only be specified when the covariates are a factor")
}
if (nbins == "auto"){
nbins <- max(1,min(40, floor(length(pvalues)/1500))) # rule of thumb..
}
groups <- as.factor(groups_by_filter(covariates, nbins, seed=seed))
penalty <- "total variation"
} else if (is.factor(covariates)){
groups <- covariates
if (nbins != "auto" & nbins != nlevels(groups)){
warning("Overwriting manually specified nbins, since it has to equal the number
of levels for categorical covariates")
}
nbins <- nlevels(groups)
if (covariate_type == "nominal"){
penalty <- "uniform deviation"
} else if (covariate_type == "ordinal") {
penalty <- "total variation"
}
} else {
stop("Covariates are not of the appropriate type")
}
if ((length(lambdas)== 1) & (lambdas[1] == "auto")){
# just a few for now until I get warm starts of the LP solvers to work
lambdas <- c(0, 1, nbins/8, nbins/4, nbins/2, nbins, Inf)
}
if (nbins < 1) {
stop("Cannot have less than one bin.")
}
group_levels <- levels(droplevels(groups))
# sort pvalues globally
order_pvalues <- order(pvalues) #TODO BREAK ties by filter statistic rank
reorder_pvalues <- order(order_pvalues)
sorted_groups <- groups[order_pvalues]
sorted_pvalues <- pvalues[order_pvalues]
if (!is.null(folds)){
sorted_folds <- folds[order_pvalues]
} else {
sorted_folds <- NULL
}
if (is.null(m_groups)) {
if (is.null(folds)){
m_groups <- table(sorted_groups)
} else {
m_groups <- table(sorted_groups, sorted_folds)
}
} else {
# TODO: also check if m_groups entered by user is plausible based on observed m_groups and max p_value
}
#--- check if m_groups is correctly specified----------------------
if (is.null(folds)){
if (length(group_levels) != length(m_groups)){
stop("Number of unique levels should be equal to length of m_groups.")
}
} else {
if (any(dim(m_groups) != c(length(group_levels), nfolds))){
stop("m_groups should be of dimension nbins*nfolds")
}
}
# once we have groups, check whether they include enough p-values
if (nbins > 1 & any(m_groups < 1000)){
message("We recommend that you supply (many) more than 1000 p-values for meaningful data-driven hypothesis weighting results.")
}
# start by making sure seed is correctly specified
if (!is.null(seed)){
#http://stackoverflow.com/questions/14324096/setting-seed-locally-not-globally-in-r?rq=1
tmp <- runif(1)
old <- .Random.seed
on.exit( { .Random.seed <<- old } )
set.seed(as.integer(seed)) #seed
}
if (nbins == 1){
nfolds <- 1L
nfolds_internal <- 1L
nsplits_internal <- 1L
message("Only 1 bin; IHW reduces to Benjamini Hochberg (uniform weights)")
sorted_adj_p <- p.adjust(sorted_pvalues, method=adjustment_type, n=sum(m_groups))
rjs <- sum(sorted_adj_p <= alpha)
res <- list(lambda=0, fold_lambdas=0, rjs=rjs, sorted_pvalues=sorted_pvalues,
sorted_weighted_pvalues = sorted_pvalues,
sorted_adj_p=sorted_adj_p, sorted_weights=rep(1, length(sorted_pvalues)),
sorted_groups=as.factor(rep(1, length(sorted_pvalues))),
sorted_folds=as.factor(rep(1, length(sorted_pvalues))),
weight_matrix = matrix(1))
} else if (nbins > 1) {
res <- ihw_internal(sorted_groups, sorted_pvalues, alpha, lambdas,
m_groups,
penalty = penalty,
quiet = quiet,
sorted_folds = sorted_folds,
nfolds = nfolds,
nfolds_internal = nfolds_internal,
nsplits_internal = nsplits_internal,
seed = NULL,
distrib_estimator = distrib_estimator,
lp_solver = lp_solver,
adjustment_type = adjustment_type,
censoring = censoring,
censoring_level = censoring_level,
null_proportion = null_proportion,
null_proportion_level = null_proportion_level,
...)
}
if (return_internal){
return(res)
}
# resort back to original form
weights <- fill_nas_reorder(res$sorted_weights, nna, reorder_pvalues)
pvalues <- fill_nas_reorder(res$sorted_pvalues, nna, reorder_pvalues)
weighted_pvalues <- fill_nas_reorder(res$sorted_weighted_pvalues, nna, reorder_pvalues)
adj_pvalues <- fill_nas_reorder(res$sorted_adj_p, nna, reorder_pvalues)
groups <- factor(fill_nas_reorder(res$sorted_groups, nna, reorder_pvalues),levels=group_levels)
folds <- factor(fill_nas_reorder(res$sorted_folds, nna, reorder_pvalues),levels=1:nfolds)
covariates <- fill_nas_reorder(covariates, nna, 1:length(covariates))
df <- data.frame(pvalue = pvalues,
adj_pvalue = adj_pvalues,
weight = weights,
weighted_pvalue = weighted_pvalues,
group= groups,
covariate = covariates,
fold=as.factor(folds))
ihw_obj <- new("ihwResult",
df = df,
weights = res$weight_matrix,
alpha = alpha,
nbins = as.integer(nbins),
nfolds = nfolds,
regularization_term = res$fold_lambdas,
m_groups = as.integer(m_groups),
penalty = penalty,
covariate_type = covariate_type,
adjustment_type = adjustment_type,
reg_path_information = data.frame(),
solver_information = list())
ihw_obj
}
# operate on pvalues which have already been sorted and without any NAs
ihw_internal <- function(sorted_groups, sorted_pvalues, alpha, lambdas,
m_groups,
penalty="total variation",
seed=NULL,
quiet=TRUE,
sorted_folds=NULL,
nfolds = 10L,
nfolds_internal = nfolds,
nsplits_internal = 1L,
distrib_estimator = "distrib_estimator",
lp_solver="lpsymphony",
adjustment_type="BH",
censoring = FALSE,
censoring_level = alpha,
null_proportion = FALSE,
null_proportion_level = censoring_level,
debug_flag=FALSE,
...){
folds_prespecified <- !is.null(sorted_folds)
# TODO: check if lambdas are sorted the way I want them to
if (censoring){
# TODO: throw warning if lambda_seq is used with censoring.
below_censoring_idx <- sorted_pvalues <= censoring_level
censored_pvalues <- sorted_pvalues[below_censoring_idx]
# do the below to be safe, but we will do more refined strategy below
sorted_pvalues[below_censoring_idx] <- 0.0
}
m <- length(sorted_pvalues)
split_sorted_pvalues <- split(sorted_pvalues, sorted_groups)
m_groups_available <- sapply(split_sorted_pvalues, length)
# do the k-fold strategy
if (!is.null(seed)){
#http://stackoverflow.com/questions/14324096/setting-seed-locally-not-globally-in-r?rq=1
old <- .Random.seed
on.exit( { .Random.seed <<- old } )
set.seed(as.integer(seed)) #seed
}
if (!folds_prespecified){
sorted_folds <- sample(1:nfolds, m, replace = TRUE)
}
sorted_weights <- rep(NA, m)
fold_lambdas <- rep(NA, nfolds)
weight_matrix <- matrix(NA, nlevels(sorted_groups), nfolds)
if (debug_flag==TRUE){
rjs_path_mat <- matrix(NA, nrow=nfolds, ncol=length(lambdas))
}
for (i in 1:nfolds){
if (!quiet) message(paste("Estimating weights for fold", i))
# don't worry about inefficencies right now, they are only O(n) and sorting dominates this
if (nfolds == 1){
filtered_sorted_groups <- sorted_groups
filtered_sorted_pvalues <- sorted_pvalues
filtered_split_sorted_pvalues <- split(filtered_sorted_pvalues, filtered_sorted_groups)
m_groups_holdout_fold <- m_groups
m_groups_other_folds <- m_groups
} else {
filtered_sorted_groups <- sorted_groups[sorted_folds!=i]
filtered_sorted_pvalues <- sorted_pvalues[sorted_folds!=i]
filtered_split_sorted_pvalues <- split(filtered_sorted_pvalues, filtered_sorted_groups)
if (censoring){
filtered_split_sorted_pvalues <- lapply(filtered_split_sorted_pvalues,
rand_cbum, censoring_level)
}
if (!folds_prespecified){
# TODO: add check to see if for common use case the first term is 0
m_groups_holdout_fold <- (m_groups-m_groups_available)/nfolds +
m_groups_available - sapply(filtered_split_sorted_pvalues, length)
m_groups_other_folds <- m_groups - m_groups_holdout_fold
} else {
m_groups_holdout_fold <- m_groups[,i]
m_groups_other_folds <- rowSums(m_groups[,-i,drop=FALSE])
}
}
# within each fold do iterations to also find lambda
# TODO replace for loop by single call to ihw_convex with warm starts
if (length(lambdas) > 1){
rjs <- matrix(NA, nrow=length(lambdas), ncol=nsplits_internal)
for (k in 1:length(lambdas)){
lambda <- lambdas[k]
for (l in 1:nsplits_internal){
rjs[k,l] <- ihw_internal(filtered_sorted_groups, filtered_sorted_pvalues, alpha,
lambda, m_groups_other_folds,
seed=NULL, quiet=quiet,
nfolds=nfolds_internal,
distrib_estimator = distrib_estimator,
lp_solver=lp_solver,
adjustment_type=adjustment_type,...)$rjs
}
if (debug_flag==TRUE){
rjs_path_mat[i,k] <- rjs[k] #only works for nsplits_internal currently
}
}
lambda <- lambdas[which.max(apply(rjs,1, mean))]
} else if (length(lambdas) == 1){
lambda <- lambdas
} else {
stop("something went wrong, need at least 1 value for regularization parameter!")
}
fold_lambdas[i] <- lambda
# ok we have finally picked lambda and can proceed
if (distrib_estimator=="grenander"){
res <- ihw_convex(filtered_split_sorted_pvalues, alpha,
m_groups_holdout_fold, m_groups_other_folds,
penalty=penalty, lambda=lambda, lp_solver=lp_solver,
adjustment_type=adjustment_type, quiet=quiet,...)
} else if (distrib_estimator == "ECDF"){
res <- ihw_milp(filtered_split_sorted_pvalues, alpha, m_groups_holdout_fold,
penalty=penalty, lambda=lambda, lp_solver=lp_solver, ...)
} else {
stop("This type of distribution estimator is not available.")
}
sorted_weights[sorted_folds == i] <- res$ws[sorted_groups[sorted_folds==i]]
weight_matrix[,i] <- res$ws
if (null_proportion){
pi0_est <- weighted_storey_pi0(sorted_pvalues[sorted_folds==i],
sorted_weights[sorted_folds == i],
tau= null_proportion_level,
m=sum(m_groups_holdout_fold))
sorted_weights[sorted_folds == i] <- sorted_weights[sorted_folds == i]/pi0_est
weight_matrix[,i] <- weight_matrix[,i]/pi0_est
}
}
if (censoring){
sorted_pvalues[below_censoring_idx] <- censored_pvalues
}
sorted_weighted_pvalues <- mydiv(sorted_pvalues, sorted_weights)
if (censoring){
sorted_weighted_pvalues[!below_censoring_idx] <- 1.0
}
sorted_adj_p <- p.adjust(sorted_weighted_pvalues, method = adjustment_type, n = sum(m_groups))
rjs <- sum(sorted_adj_p <= alpha)
lst <- list(lambda=lambda, fold_lambdas=fold_lambdas, rjs=rjs, sorted_pvalues=sorted_pvalues,
sorted_weighted_pvalues = sorted_weighted_pvalues,
sorted_adj_p=sorted_adj_p, sorted_weights=sorted_weights,
sorted_groups=sorted_groups, sorted_folds=sorted_folds,
weight_matrix = weight_matrix)
if (debug_flag == TRUE) {
lst$rjs_path_mat <- rjs_path_mat
}
lst
}
#' @rdname ihw.default
#' @param formula \code{\link{formula}}, specified in the form pvalue~covariate (only 1D covariate supported)
#' @param data data.frame from which the variables in formula should be taken
#' @export
ihw.formula <- function(formula, data=parent.frame(), ...){
if (length(formula) != 3){
stop("expecting formula of the form pvalue~covariate")
}
pv_name <- formula[[2]]
cov_name <- formula[[3]]
pvalues <- eval(pv_name, data, parent.frame())
covariates <- eval(cov_name, data, parent.frame())
ihw(pvalues, covariates, ...)
}
#' ihw.DESeqResults: IHW method dispatching on DESeqResults objects
#'
#' @param deseq_res "DESeqResults" object
#' @param filter Vector of length equal to number of rows of deseq_res object. This is used
#' for the covariates in the call to ihw. Can also be a character,
#' in which case deseq_res[[filter]] is used as the covariate
#' @param alpha Numeric, sets the nominal level for FDR control.
#' @param adjustment_type Character ("BH" or "bonferroni") depending on whether you want to control FDR or FWER.
#' @param ... Other optional keyword arguments passed to ihw.
#'
#' @return A "DESeqResults" object, which includes weights and adjusted p-values returned
#' by IHW. In addition, includes a metadata slot with an "ihwResult" object.
#' @seealso ihw, ihwResult
#'
#' @examples \dontrun{
#' library("DESeq2")
#' library("airway")
#' data("airway")
#' dds <- DESeqDataSet(se = airway, design = ~ cell + dex)
#' dds <- DESeq(dds)
#' deseq_res <- results(dds)
#' deseq_res <- ihw(deseq_res, alpha=0.1)
#' #equivalent: deseq_res2 <- results(dds, filterFun = ihw)
#' }
#'
#' @export
#'
ihw.DESeqResults <- function(deseq_res, filter="baseMean",
alpha=0.1, adjustment_type="BH",...){
if (missing(filter)) {
filter <- deseq_res$baseMean
} else if (is.character(filter)){
stopifnot(filter %in% colnames(deseq_res))
filter <- deseq_res[[filter]]
}
stopifnot(length(filter) == nrow(deseq_res))
ihw_res <- ihw(deseq_res$pvalue, filter, alpha=alpha,
adjustment_type=adjustment_type,...)
deseq_res$padj <- adj_pvalues(ihw_res)
deseq_res$weight <- weights(ihw_res)
mcols(deseq_res)$type[names(deseq_res)=="padj"] <- "results"
mcols(deseq_res)$description[names(deseq_res)=="padj"] <- paste("Weighted", adjustment_type,"adjusted p-values")
mcols(deseq_res)$type[names(deseq_res)=="weight"] <- "results"
mcols(deseq_res)$description[names(deseq_res)=="weight"] <- "IHW weights"
metadata(deseq_res)[["alpha"]] <- alpha
metadata(deseq_res)[["ihwResult"]] <- ihw_res
deseq_res
}
#' @importFrom slam simple_triplet_zero_matrix simple_triplet_matrix
#' @importFrom lpsymphony lpsymphony_solve_LP
ihw_convex <- function(split_sorted_pvalues, alpha, m_groups, m_groups_grenander,
penalty="total variation", lambda=Inf, lp_solver="gurobi",
adjustment_type= "BH", grenander_binsize = 1, quiet=quiet){
# m_groups used for balancing (weight budget)
# m_groups_grenander (used for grenander estimator)
# Practically always it will hold: m_groups \approx m_groups_grenander
nbins <- length(split_sorted_pvalues)
if (lambda==0){
ws <- rep(1, nbins)
return(list(ws=ws))
}
# preprocessing: Set very low p-values to 0, otherwise LP solvers have problems due to numerical instability
# Note: This only affects the internal optimization, the higher level functions will
# still return adjusted pvalues based on the original p-values
split_sorted_pvalues <- lapply(split_sorted_pvalues, function(x) ifelse(x > 10^(-20), x, 0))
m <- sum(m_groups)
if (nbins != length(m_groups)){
stop("length of m_groups should be equal to number of bins")
}
#lapply grenander...
if (!quiet) message("Applying Grenander estimator within each bin.")
grenander_list <- mapply(presorted_grenander,
split_sorted_pvalues,
m_groups_grenander,
grenander_binsize = grenander_binsize,
quiet=quiet,
SIMPLIFY=FALSE)
#set up LP
nconstraints_per_bin <- sapply(grenander_list, function(x) x$length)
nconstraints <- sum(nconstraints_per_bin)
i_yi <- 1:nconstraints
j_yi <- rep(1:nbins, times=nconstraints_per_bin)
v_yi <- rep(1, nconstraints)
i_ti <- 1:nconstraints
j_ti <- nbins + rep(1:nbins, times=nconstraints_per_bin)
v_ti <- unlist(lapply(grenander_list, function(x) -x$slope.knots))
constr_matrix <- slam::simple_triplet_matrix(c(i_yi, i_ti), c(j_yi,j_ti), c(v_yi, v_ti))
rhs <- unlist(lapply(grenander_list, function(x) x$y.knots-x$slope.knots*x$x.knots))
obj <- c(m_groups/m*nbins*rep(1,nbins), rep(0,nbins))
if (lambda < Inf){
if (penalty == "total variation"){
# -f + t_g - t_{g-1} <= 0
i_fi <- rep(1:(nbins-1),3)
j_fi <- c((nbins+2):(2*nbins), (nbins+1):(2*nbins-1), (2*nbins+1):(3*nbins-1))
v_fi <- c(rep(1,nbins-1), rep(-1,nbins-1), rep(-1, nbins-1))
absolute_val_constr_matrix_1 <- slam::simple_triplet_matrix(i_fi,j_fi,v_fi)
# -f - t_g + t_{g-1} <= 0
i_fi <- rep(1:(nbins-1),3)
j_fi <- c((nbins+2):(2*nbins), (nbins+1):(2*nbins-1), (2*nbins+1):(3*nbins-1))
v_fi <- c(rep(-1,nbins-1), rep(1,nbins-1), rep(-1, nbins-1))
absolute_val_constr_matrix_2 <- slam::simple_triplet_matrix(i_fi,j_fi,v_fi)
constr_matrix <- rbind(cbind(constr_matrix, slam::simple_triplet_zero_matrix(nconstraints, nbins-1,mode="double")),
absolute_val_constr_matrix_1,
absolute_val_constr_matrix_2)
obj <- c(obj, rep(0, nbins-1))
total_variation_constr <- matrix(c(rep(0,nbins), -lambda*m_groups/m, rep(1,nbins-1)),nrow=1)
constr_matrix <- rbind(constr_matrix, total_variation_constr)
rhs <- c(rhs,rep(0, 2*(nbins-1)),0) #add RHS for absolute differences and for total variation penalty
} else if (penalty == "uniform deviation"){
# -f + m t_g - sum_g m_i t_i <= 0
absolute_val_constr_matrix_1 <- matrix(rep(-m_groups,nbins), nbins,nbins, byrow=TRUE)
diag(absolute_val_constr_matrix_1) <- -m_groups + m
absolute_val_constr_matrix_1 <- cbind( slam::simple_triplet_zero_matrix(nbins, nbins,mode="double"),
absolute_val_constr_matrix_1,
-diag(nbins))
# -f - m t_g + sum_g m_i t_i <= 0
absolute_val_constr_matrix_2 <- matrix(rep(+m_groups,nbins), nbins,nbins, byrow=TRUE)
diag(absolute_val_constr_matrix_2) <- m_groups - m
absolute_val_constr_matrix_2 <- cbind( slam::simple_triplet_zero_matrix(nbins, nbins,mode="double"),
absolute_val_constr_matrix_2,
-diag(nbins))
constr_matrix <- rbind(cbind(constr_matrix, slam::simple_triplet_zero_matrix(nconstraints, nbins,mode="double")),
absolute_val_constr_matrix_1,
absolute_val_constr_matrix_2)
obj <- c(obj, rep(0, nbins))
total_variation_constr <- matrix(c(rep(0,nbins), -lambda*m_groups, rep(1,nbins)),nrow=1)
constr_matrix <- rbind(constr_matrix, total_variation_constr)
rhs <- c(rhs,rep(0, 2*nbins),0) #add RHS for absolute differences and for total variation penalty
}
}
if (adjustment_type == "BH"){
# incorporate the FDR constraint
fdr_constr<- matrix(c(rep(-alpha,nbins)*m_groups,
rep(1,nbins)*m_groups,
rep(0,ncol(constr_matrix)-2*nbins)), nrow=1)
constr_matrix <- rbind(constr_matrix, fdr_constr)
rhs <- c(rhs,0)
} else if (adjustment_type == "bonferroni"){
# incorporate the FWER constraint
fwer_constr<- matrix(c(rep(0,nbins),
rep(1,nbins)*m_groups,
rep(0,ncol(constr_matrix)-2*nbins)), nrow=1)
constr_matrix <- rbind(constr_matrix, fwer_constr)
rhs <- c(rhs,alpha)
} else {
stop("Only BH-like and bonferroni-like adjustments available.")
}
nvars <- ncol(constr_matrix)
if (!quiet) message("Starting to solve LP.")
if (lp_solver == "gurobi"){
#if (!require("gurobi", quietly=TRUE)){
# stop("Gurobi solver appears not be installed. Please use lpsymphony or install gurobi.")
#}
if (!requireNamespace("Matrix", quietly=TRUE)){
stop("Matrix package required to use gurobi in IHW.")
}
model <- list()
model$A <- Matrix::sparseMatrix(i=constr_matrix$i, j=constr_matrix$j, x=constr_matrix$v,
dims=c(constr_matrix$nrow, constr_matrix$ncol))
model$obj <- obj
model$modelsense <- "max"
model$rhs <- rhs
model$lb <- 0
model$ub <- 2
model$sense <- '<'
params <- list(OutputFlag=1)
res <- gurobi(model, params)
sol <- res$x
solver_status <- res$status
} else if (lp_solver=="lpsymphony") {
#rsymphony_bounds <- list(lower=list(ind=1:nvars, val=rep(0,nvars)),
# upper=list(ind=1:nvars, val=rep(1,nvars)))
#if (is.infinite(time_limit)) time_limit <- -1
#if (is.infinite(node_limit)) node_limit <- -1
res <- lpsymphony::lpsymphony_solve_LP(obj, constr_matrix, rep("<=", nrow(constr_matrix)),
rhs, #bounds= rsymphony_bounds,
max = TRUE, verbosity = -2, first_feasible = FALSE)
sol <- res$solution
solver_status <- res$status
} else {
stop("Only gurobi and lpsymphony solvers currently supported.")
}
# catch negative thresholds due to numerical rounding
ts <- pmax(sol[(1:nbins)+nbins],0)
ws <- thresholds_to_weights(ts, m_groups) #\approx ts/sum(ts)*nbins
# return matrix as follows: nbins x nlambdas)
return(list(ws=ws))
}
#' @importFrom fdrtool gcmlcm
presorted_grenander <- function(sorted_pvalues, m_total=length(sorted_pvalues),
grenander_binsize = 1,
quiet=TRUE){
unique_pvalues <- unique(sorted_pvalues)
ecdf_values <- cumsum(tabulate(match(sorted_pvalues, unique_pvalues)))/m_total
if (min(unique_pvalues) > 0){
# I think fdrtool neglects this borderline case and this causes returned object
# to be discontinuous hence also not concave
unique_pvalues <- c(0,unique_pvalues)
ecdf_values <- c(0, ecdf_values)
}
if (max(unique_pvalues) < 1){
unique_pvalues <- c(unique_pvalues,1)
ecdf_values <- c(ecdf_values,1)
}
if (grenander_binsize != 1){
nmax = length(unique_pvalues)
idx_thin <- c(seq(1, nmax-1, by=grenander_binsize), nmax)
unique_pvalues <- unique_pvalues[idx_thin]
ecdf_values <- ecdf_values[idx_thin]
}
ll <- fdrtool::gcmlcm(unique_pvalues, ecdf_values, type="lcm")
ll$length <- length(ll$slope.knots)
ll$x.knots <- ll$x.knots[-ll$length]
ll$y.knots <- ll$y.knots[-ll$length]
if (!quiet) message(paste("Grenander fit with", ll$length, "knots."))
ll
}
# mostly deprecated function (users should not be using it)
# needed for reproducibility of manuscript
# to demonstrate that "naive IHW" algorithm does not control type-I error
ihw_milp <- function(split_sorted_pvalues, alpha, m_groups, lambda=Inf, lp_solver="gurobi",
quiet=quiet,
optim_pval_threshold=1,
penalty="total variation",
lp_relaxation=FALSE,
t_bh=0,
bh_rejections =0,
rejections_bound=NULL,
time_limit=Inf,
node_limit=Inf,
threads=0,
solution_limit=Inf,
mip_gap_abs=Inf,
mip_gap = 10^(-4),
MIPFocus=0){
nbins <- length(split_sorted_pvalues)
if (lambda==0){
ws <- rep(1, nbins)
return(list(ws=ws))
}
m <- sum(m_groups)
mtests <- m
if (nbins != length(m_groups)){
stop("length of m_groups should be equal to number of bins")
}
if (optim_pval_threshold < 1){
# keep at least 2 p-values in each group, so we do not have to add special cases for n=0 or n=1
split_sorted_pvalues <- lapply(split_sorted_pvalues,
function(p) p[p <= max(p[2],optim_pval_threshold)])
}
pmax <- max(unlist(split_sorted_pvalues))
split_sorted_pvalues <- lapply(split_sorted_pvalues, function(p) p/pmax)
#ts_bh <- sapply(split_sorted_pvalues, function(ps) max(0, ps[ps <= t_bh]))
# create a simple_triplet_matrix (sparse matrix) representation,
# function to create sparse-representation of group-wise blocks enforcing the constraints
# z_1 >= z_2 >= .. in each group i.e. [(m_group -1) X m_group] matrix of the form:
#
# 1 -1 0 ......
# 0 1 -1 ......
# 0 0 1 ......
# ...............
#
# Also parameters to make it easy to diagonally combine these blocks afterwards
single_block_triple_representation <- function(start, p_length,prev_block){
one_block <- cbind(start:(start+p_length-2), (prev_block+start):(prev_block+start+p_length-2), rep(1,p_length-1))
minus_one_block <- cbind(start:(start+p_length-2), (prev_block+1+start):(prev_block+start+p_length-1), rep(-1, p_length-1))
rbind(one_block, minus_one_block)
}
# create, combine above blocks and store them as simple triplet matrix
p_lengths <- sapply(split_sorted_pvalues,length)
prev_blocks <- 0:(nbins-1)
starts <- cumsum(c(1,p_lengths[-nbins]-1))
full_triplet <- do.call(rbind, mapply(single_block_triple_representation, starts,p_lengths, prev_blocks, SIMPLIFY=FALSE))
full_triplet <- slam::simple_triplet_matrix(full_triplet[,1],full_triplet[,2], full_triplet[,3])
# add final constraint to matrix which corresponds to control of plug-in FDR estimate
diff_coefs <- unlist(mapply(function(p, m_group) diff(c(0,p))* m_group , split_sorted_pvalues, m_groups))
#plugin_fdr_constraint <- (alpha - diff_coefs * mtests/m)/m #alpha - diff_coefs * mtests/m
plugin_fdr_constraint <- (alpha/pmax - diff_coefs * mtests/m)/m #alpha - diff_coefs * mtests/m
full_triplet <- rbind(full_triplet, matrix(plugin_fdr_constraint, nrow=1))
z_vars <- ncol(full_triplet) #number of binary variables
obj <- rep(1, z_vars) # maximize number of rejections
if (is.finite(lambda)){
# start with new code which introduces regularization
# first we introduce #nbins new random variables T_g, such that
# t_{g} <= T_g < t'_{g} [in practice the second < has to be turned into a <=]
# this reflects the fact that for all these values of T_g, still the same hypotheses will be rejected
# in stratum g.
full_triplet <- cbind(full_triplet, matrix(0, nrow(full_triplet), nbins))
# Below we modify objective a tiny bit by enforcing some minimization on \sum m_g T_g
# because 1/(4m)* \sum m_g T_g << 1 we ensure that our objective of interest (number of rejections) does not change
# Motivation for this soft constraint:
# 1) Make final solution (in terms of threshold T_g) "somewhat" unique
# 2) (more importantly): assist solver in preventing possible violation of plugin FDR control due to numerical issues
# due to small p-values.
obj <- c(obj, -.25*m_groups/m)
# first g constraints representing t_{g} <= T_g can be represented by [-A I_g] with A:
#
# 1 1 | | | # t_1
# | 1 1 1 | | # t_2
# | | 1 1 1 | # t_3
#
# (Replace 1s by diff(c(0,p)) values)
pdiff_list <- lapply(split_sorted_pvalues, function(p) diff(c(0,p)))
left_ineq_matrix_block <- function(g, p_length, pdiff){
mat <- matrix(0, nbins, p_length)
mat[g,] <- - pdiff
mat
}
# now put above blocks together
ineq_matrix <- rbind( cbind(do.call(cbind, mapply(left_ineq_matrix_block, 1:nbins, p_lengths, pdiff_list, SIMPLIFY=FALSE)),
diag(1, nbins)))
# for these T_g's we also require the plug-in FDR estimate to be controlled
# (in fact we could drop the old constraint on the t_g's, but the extra constraint could help with the relaxations)
# we also divide the constraint by m (arbitrary) so that the coefficient range of the matrix is not too large
# which could cause numerical problems
#plugin_fdr_constraint2 <- matrix(c(rep(alpha/m,z_vars), -m_groups/m), nrow=1)
plugin_fdr_constraint2 <- matrix(c(rep(alpha/m/pmax,z_vars), -m_groups/m), nrow=1)
# put these constraints together..
full_triplet <- rbind(full_triplet, ineq_matrix, plugin_fdr_constraint2)
if (penalty=="total variation"){
# this implements a penalty of the form: \sum_{g=2}^G |w_g - w_{g-1}| <= reg_par
# |T_g - T_{g-1}| = f_g introduce absolute value constants, i.e. introduce nbins-1 new continuous variables
full_triplet <- cbind(full_triplet, matrix(0,nrow(full_triplet),nbins-1))
obj <- c(obj, rep(0, nbins-1))
# we now need inequalities: T_g - T_{g-1} + f_g >= 0 and -T_g + T_{g-1} + f_g >= 0
# start with matrix diff_matrix (nbins-1) X nbins as a scaffold i.e.
#
# -1 1
# -1 1
# -1 1
diff_matrix <- diag(-1,nbins-1,nbins) + cbind(rep(0,nbins-1), diag(1,nbins-1))
abs_constraint_matrix <- rbind(cbind(slam::simple_triplet_zero_matrix(nbins-1, z_vars,mode="double"),
diff_matrix, slam::simple_triplet_diag_matrix(1, nrow=nbins-1)),
cbind(slam::simple_triplet_zero_matrix(nbins-1, z_vars,mode="double"),
-diff_matrix, slam::simple_triplet_diag_matrix(1, nrow=nbins-1)))
# add final regularization inequality:
# \sum |w_g - w_{g-1}| <= reg_par
# <=> \sum |T_g - T_{g-1}|*m <= reg_par * \sum m_g T_g
regularization_constraint <- matrix(c(rep(0,z_vars), lambda/m*m_groups, rep(-1, nbins-1)), nrow=1)
# to be used for ub afterwards
regularization_ub <- c(rep(1, nbins), rep(2, nbins-1))
} else if (penalty=="uniform deviation"){
# this implements a penalty of the form: \sum_{g=1}^G |w_g -1| <= reg_par
# |m*T_g - \sum_{i=1}^G m_i T_i| = f_g introduce absolute value constants, i.e. introduce nbins new continuous variables
full_triplet <- cbind(full_triplet, matrix(0,nrow(full_triplet),nbins))
obj <- c(obj, rep(0, nbins))
# we now need inequalities: m*T_g - \sum_{i=1}^G m_i T_i + f_g >= 0 and -m*T_g + \sum_{i=1}^G m_iT_i + f_g >= 0
# start with matrix diff_matrix (nbins X nbins) as a scaffold i.e.
#
# (m-m_1) -m_2 -m_3 ......
# -m_1 (m - m_2) -m_3 ......
# -m_1 -m_2 (m-m_3) ......
# . . . .
# . . . .
# . . . .
diff_matrix <- diag(m, nbins, nbins) - matrix(rep(m_groups, each=nbins), nrow=nbins)
abs_constraint_matrix <- rbind(cbind(slam::simple_triplet_zero_matrix(nbins, z_vars,mode="double"),
diff_matrix, slam::simple_triplet_diag_matrix(1, nrow=nbins)),
cbind(slam::simple_triplet_zero_matrix(nbins, z_vars,mode="double"),
-diff_matrix, slam::simple_triplet_diag_matrix(1, nrow=nbins)))
# add final regularization inequality:
# \sum |w_g - 1| <= reg_par
# <=> \sum |m*T_g - \sum m_i T_i| <= reg_par * \sum m_i T_i
regularization_constraint <- matrix(c(rep(0,z_vars), lambda*m_groups, rep(-1, nbins)), nrow=1)
# to be used for ub afterwards
regularization_ub <- c(rep(1, nbins), rep(2*m, nbins))
} else {
stop("No such regularization penalty currently supported.")
}
# put all constraints together
full_triplet <- rbind(full_triplet, abs_constraint_matrix, regularization_constraint)
}
# finally add an inequality ensuring that we get at least as many rejections as BH
# added this feature as an ad-hoc solution to a previous problematic regularization implementation
# but actually seems to also speed up the optimization problem!
bh_rj_inequality <- matrix(c(rep(1, z_vars), rep(0, ncol(full_triplet)-z_vars)), nrow=1)
full_triplet <- rbind(full_triplet, bh_rj_inequality)
if (!is.null(rejections_bound)){
full_triplet <- rbind(full_triplet, -bh_rj_inequality)
}
nrows <- nrow(full_triplet)
model_rhs <- c(rep(0,nrows-1), bh_rejections)
if (!is.null(rejections_bound)){
model_rhs <- c(rep(0,nrows-2), -rejections_bound)
}
if (lp_relaxation){
model_vtype <- rep('C', ncol(full_triplet))
} else {
model_vtype <- c(rep('B', z_vars), rep('C', ncol(full_triplet)-z_vars))
}
# model ub will actually depend on which penalty we choose
# model ub = 1 for binary variables, 1 for thresholds, x for f_g, where
# x=2 for total variation, x=2*m for uniform deviation
model_ub <- c(rep(1, z_vars))
if (z_vars < nrows){
model_ub <- c(model_ub, regularization_ub)
}
if (lp_solver=="lpsymphony") {
rsymphony_ub <- list(upper = list(ind = 1:ncol(full_triplet), val = model_ub))
if (is.infinite(time_limit)) time_limit <- -1
if (is.infinite(node_limit)) node_limit <- -1
res<- lpsymphony::lpsymphony_solve_LP(obj, full_triplet, rep(">=", nrows),
model_rhs,
types = model_vtype, bounds= rsymphony_ub,
max = TRUE, verbosity = -2, time_limit = time_limit,
node_limit = node_limit, gap_limit = ifelse(mip_gap <= 10^(-4), -1, mip_gap*100), #now default mip_gap=10^(-4) as in Gurobi while -1 default for Rsymphony
first_feasible = FALSE)
sol <- res$solution
print(str(res))
solver_status <- res$status
} else if (lp_solver=="gurobi"){
#if (!require("gurobi", quietly=TRUE)){
# stop("Gurobi solver appears not be installed. Please use lpsymphony or install gurobi.")
#}
if (!requireNamespace("Matrix", quietly=TRUE)){
stop("Matrix package required to use gurobi in IHW.")
}
# keep code for commercial solver for now
#speed up compared to Symphony appears to be at least ~2-10, depending on problem
# convert simple_triplet_matrix of pkg Slam to sparse matrix of pkg Matrix
# gurobi has problems with simple_triplet_matrix for an (undocumented) reason (?bug)
full_triplet <- Matrix::sparseMatrix(i=full_triplet$i, j=full_triplet$j, x=full_triplet$v,
dims=c(full_triplet$nrow, full_triplet$ncol))
model <- list()
model$A <- full_triplet
model$obj <- obj
model$modelsense <- "max"
model$rhs <- model_rhs
model$lb <- 0
model$ub <- model_ub
model$sense <- '>'
model$vtype <- model_vtype
# the parameters below make the optimization procedure MUCH slower
# but they are actually necessary... (need to check what happens with open source solvers)
# turns out that enforcing T_g >= t_g is numerically very hard in the context of this problem
params <- list(NumericFocus=3, FeasibilityTol=10^(-9), ScaleFlag=0 , Quad=1, IntFeasTol=10^(-9),
OutputFlag = 0, #Presolve=0,#10,
Threads=threads,MIPFocus=MIPFocus,
MIPGap = mip_gap)
if (is.finite(time_limit)) params$TimeLimit <- time_limit
if (is.finite(node_limit)) params$NodeLimit <- node_limit
if (is.finite(solution_limit)) params$SolutionLimit <- solution_limit
if (is.finite(mip_gap_abs)) params$MIPGapAbs <- mip_gap_abs
res <- gurobi(model, params)
sol <- res$x
solver_status <- res$status
} else {
stop("Only gurobi and lpsymphony solvers are currently supported.")
}
# next try to extract the thresholds/weights from solver output
lengths <- cumsum(sapply(split_sorted_pvalues, length))
start_lengths <- c(1, lengths[-nbins]+1)
pidx_list <- mapply(function(start,end) sol[start:end], start_lengths,lengths, SIMPLIFY=FALSE)
get_threshold <- function(plist, pidx){
max_idx <- which.max(which(pidx==1))
ifelse(length(max_idx)==0, .0, plist[max_idx])
}
#get_threshold2 <- function(pdiff, pidx){
# sum(pdiff*pidx)
#}
t_thresholds1 <- mapply(get_threshold, split_sorted_pvalues, pidx_list) # to be stored in ddhw object
#t_thresholds2 <- mapply(get_threshold2, pdiff_list, pidx_list)
t_thresholds <- if (is.infinite(lambda)){
t_thresholds1
} else {
sol[(z_vars+1):(z_vars+nbins)] # to be used for calculating weights
}
####################################################################################################
# Possible checks of whether solver did not do (important) numerical errors: #TODO
#
# 1) t_thresholds >= t_thresholds1
# 2) Plugin FDR has to be controlled (with respect to both t_thresholds, t_thresholds2)
# 3) total variation of weights has to be less than lambda
#
#####################################################################################################
ws <- if (all(t_thresholds1 == .0) || all(t_thresholds == .0)){
rep(1,nbins)
} else {
t_thresholds*m/sum(m_groups*t_thresholds) #might need adjustment if mtests > m
}
return(list(ws=ws))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.