inst/scripts/make-data_MafH5.gnomAD.r3.0.GRCh38.R

## This README file explains the steps to download and freeze in this
## annotation package the gnomAD genome allele frequencies. If you use
## these data please cite the following publication:

## Karczewski et al. Variation across 141,456 human exomes and genomes
## reveals the spectrum of loss-of-function intolerance across human
## protein-coding genes. bioRxiv, 531210, 2019.
## doi: http://dx.doi.org/10.1101/531210

## See http://gnomad.broadinstitute.org/terms for further information
## on using this data for your own research

## The data were downloaded from as follows:
##
## allchr=`seq 1 22`" X"
## for chr in $allchr ; do {
##   gsutil -m cp -r gs://gnomad-public/release/3.0/vcf/genomes/gnomad.genomes.r3.0.sites.chr$chr.vcf.bgz.tbi .
##   gsutil -m cp -r gs://gnomad-public/release/3.0/vcf/genomes/gnomad.genomes.r3.0.sites.chr$chr.vcf.bgz .
## } done


## The following R script processes the downloaded and splitted data to
## transform the allele frequencies into minor allele frequencies
## and store them using only one significant digit for values < 0.1,
## and two significant digits for values > 0.1, to reduce the memory
## footprint through RleList objects

library(Rsamtools)
library(GenomicRanges)
library(GenomeInfoDb)
library(VariantAnnotation)
library(BSgenome.Hsapiens.UCSC.hg38)
library(doParallel)

downloadURL <- "http://gnomad.broadinstitute.org/downloads"
citationdata <- bibentry(bibtype="Article",
                         author=c(person("Konrad J Karczewski"), person("et al.")),
                         title="Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes",
                         journal="bioRxiv",
                         pages="531210",
                         year="2019",
                         doi="10.1101/531210")

registerDoParallel(cores=4) ## up to 30 Gb per process

## quantizer function. it maps input real-valued [0, 1] allele frequencies
## to positive integers [1, 255] so that each of them can be later
## coerced into a single byte (raw type). allele frequencies between 0.1 and 1.0
## are quantized using two significant digits, while allele frequencies between
## 0 and 0.1 are quantized using one significant digit. quantized values are
## add up one unit to make them positive and keep the value 0 to encode for NAs
## since there is no NA value in the raw class (Sec. 3.3.4 NA handling, R Language Definition)
.quantizer <- function(x) {
  .ndec <- function(x) {
    spl <- strsplit(as.character(x+1), "\\.")
    spl <- sapply(spl, "[", 2)
    spl[is.na(spl)] <- ""
    nchar(spl)
  }

  maskNAs <- is.na(x)
  x[!maskNAs & x > 0.1] <- signif(x[!maskNAs & x > 0.1], digits=2)
  x[!maskNAs & x <= 0.1] <- signif(x[!maskNAs & x <= 0.1], digits=1)
  x[maskNAs] <- NA
  nd <- .ndec(x)
  x[nd < 3] <- x[nd < 3] * 100
  x[nd >= 3] <- x[nd >= 3] * 10^nd[nd >= 3] + 100 + (nd[nd >= 3] - 3) * 10
  x <- x + 1
  x[maskNAs] <- 0
  q <- as.integer(sprintf("%.0f", x)) ## coercing through character is necessary
                                      ## to deal with limitations of computer
                                      ## arithmetic such as with as.integer(0.29*100)
  if (any(q > 255))
    stop("current number of quantized values > 255 and cannot be stored into one byte")
  q
}
attr(.quantizer, "description") <- "quantize [0.1-1] with 2 significant digits and [0-0.1) with 1 significant digit"

## dequantizer function
.dequantizer <- function(q) {
  x <- q <- as.integer(q)
  x[x == 0L] <- NA
  x <- (x - 1L) / 100L
  maskNAs <- is.na(x)
  q <- q - 1L
  sel <- !maskNAs & q > 100L
  x[sel] <- ((q[sel] - 100L) %% 10L) / 10^(floor((q[sel] - 100L) / 10L) + 3L)
  x
}
attr(.dequantizer, "description") <- "dequantize [0-100] dividing by 100, [101-255] subtract 100, take modulus 10 and divide by the corresponding power in base 10"

vcfFilename <- "gnomad.genomes.r3.0.sites.chr21.vcf.bgz" ## just pick one file
genomeversion <- "GRCh38"
pkgname <- sprintf("MafDb.gnomAD.r3.0.%s", genomeversion)
dir.create(pkgname)

path2vcfs <- "/projects_fg/GenomicScores/gnomad/GRCh38/r3.0/genomes"

vcfHeader <- scanVcfHeader(file.path(path2vcfs, vcfFilename))

namesstdchr <- standardChromosomes(Hsapiens)
stopifnot(all(seqlengths(vcfHeader)[namesstdchr] == seqlengths(Hsapiens)[namesstdchr])) ## QC

## fill up SeqInfo data
si <- keepStandardChromosomes(seqinfo(vcfHeader))
isCircular(si) <- isCircular(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
genome(si) <- genome(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]

## save the GenomeDescription object
refgenomeGD <- GenomeDescription(organism=organism(Hsapiens),
                                 common_name=commonName(Hsapiens),
                                 provider=provider(Hsapiens),
                                 provider_version=providerVersion(Hsapiens),
                                 release_date=releaseDate(Hsapiens),
                                 release_name=releaseName(Hsapiens),
                                 seqinfo=si)
saveRDS(refgenomeGD, file=file.path(pkgname, "refgenomeGD.rds"))

## read INFO column data
infoCols <- rownames(info(vcfHeader))
AFcols <- infoCols[grep("^AF", infoCols)]
exclude <- grep("raw|male", AFcols)
if (length(exclude) > 0)
  AFcols <- AFcols[-exclude] ## remove columns such as those for maximum allele frequency among populations

message("Starting to process variants")

## restrict VCF INFO columns to AC and AN values
vcfPar <- ScanVcfParam(geno=NA,
                       fixed=c("ALT", "FILTER"),
                       info=AFcols)

foreach (chr=setdiff(namesstdchr, "chrM")) %dopar% { ## no VCF file for chrM

  message(sprintf("Reading VCF from chromosome %s", chr))

  ## read the whole VCF into main memory (up to 32Gb of RAM for chromosome 1)
  vcf <- readVcf(file.path(path2vcfs, sprintf("gnomad.genomes.r3.0.sites.%s.vcf.bgz", chr)),
                 genome=genomeversion, param=vcfPar)

  vcf <- keepStandardChromosomes(vcf)
  seqinfo(vcf) <- si

  ## discard variants not passing all FILTERS
  mask <- fixed(vcf)$FILTER == "PASS"
  vcf <- vcf[mask, ]
  gc()

  ## mask variants where all alternate alleles are SNVs
  evcf <- expand(vcf)
  maskSNVs <- sapply(relist(isSNV(evcf), alt(vcf)), all)
  rm(evcf)
  gc()

  ## treat snvs and nonSNVs separately
  vcfsnvs <- vcf[maskSNVs, ]
  vcfnonsnvs <- vcf[!maskSNVs, ]

  ##
  ## SNVs
  ##

  ## fetch SNVs coordinates
  rr <- rowRanges(vcfsnvs)

  ## clean up the ranges
  mcols(rr) <- NULL
  names(rr) <- NULL
  gc()

  ## fill up missing SeqInfo data
  isCircular(rr) <- isCircular(si)
  seqlengths(rr) <- seqlengths(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
  isCircular(rr) <- isCircular(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
  genome(rr) <- genome(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]

  ## according to https://samtools.github.io/hts-specs/VCFv4.3.pdf
  ## "It is permitted to have multiple records with the same POS"
  rrbypos <- split(rr, start(rr))
  rr <- rr[!duplicated(rr)]
  ## put back the genomic order
  mt <- match(as.character(start(rr)), names(rrbypos))
  stopifnot(all(!is.na(mt))) ## QC
  rrbypos <- rrbypos[mt]
  rm(mt)
  gc()

  ## fetch allele frequency data
  afValues <- info(vcfsnvs)
  clsValues <- sapply(afValues, class)

  for (j in seq_along(AFcols)) {
    afCol <- AFcols[j]

    message(sprintf("Processing %s SNVs allele frequencies from chromosome %s", afCol, chr))
    mafValuesCol <- afValues[[afCol]]
    if (clsValues[afCol] == "numeric" || clsValues[afCol] == "Numeric") {
      mafValuesCol <- as.numeric(mafValuesCol)
    } else if (clsValues[afCol] == "character") {
      mafValuesCol <- as.numeric(sub(pattern="\\.", replacement="0", mafValuesCol))
    } else if (clsValues[afCol] == "CompressedNumericList") { ## in multiallelic variants take
      mafValuesCol <- sapply(mafValuesCol, max)               ## the maximum allele frequency
    } else if (clsValues[afCol] == "CompressedCharacterList") {
      mafValuesCol <- sapply(NumericList(lapply(mafValuesCol, sub, pattern="\\.", replacement="0")), max)
    } else {
      stop(sprintf("Uknown class for holding AF values (%s)", clsValues[afCol]))
    }

    ## allele frequencies from gnomAD are calculated from alternative alleles,
    ## so for some of them we need to turn them into minor allele frequencies (MAF)
    ## for biallelic variants, in those cases the MAF comes from the REF allele
    maskREF <- !is.na(mafValuesCol) & mafValuesCol > 0.5
    if (any(maskREF))
      mafValuesCol[maskREF] <- 1 - mafValuesCol[maskREF]

    mafValuesCol <- relist(mafValuesCol, rrbypos)
    maskREF <- relist(maskREF, rrbypos)
    mafValuesCol <- sapply(mafValuesCol, max) ## in multiallelic variants
                                              ## take the maximum allele frequenc
    maskREF <- sapply(maskREF, any) ## in multiallelic variants, when any of the
                                    ## alternate alleles has AF > 0.5, then we
                                    ## set to TRUE maskREF as if the MAF is in REF

    q <- .quantizer(mafValuesCol)
    x <- .dequantizer(q)
    f <- cut(x, breaks=c(0, 10^c(seq(floor(min(log10(x[x!=0]), na.rm=TRUE)),
                                     ceiling(max(log10(x[x!=0]), na.rm=TRUE)), by=1))),
             include.lowest=TRUE)
    err <- abs(mafValuesCol-x)
    max.abs.error <- tapply(err, f, mean, na.rm=TRUE)

    ## build an integer-Rle object using the 'coverage()' function
    obj <- coverage(rr, weight=q)[[chr]]
    ## build an integer-Rle object of maskREF using the 'coverage()' function
    maskREFobj <- coverage(rr, weight=maskREF+0L)[[chr]]

    ## build ECDF of MAF values
    if (length(unique(mafValuesCol)) <= 10000) {
      Fn <- ecdf(mafValuesCol)
    } else {
      Fn <- ecdf(sample(mafValuesCol, size=10000, replace=TRUE))
    }

    ## coerce to raw-Rle, add metadata and save
    if (any(runValue(obj) != 0)) {
      runValue(obj) <- as.raw(runValue(obj))
      runValue(maskREFobj) <- as.raw(runValue(maskREFobj))
      metadata(obj) <- list(seqname=chr,
                            provider="BroadInstitute",
                            provider_version="r3.0",
                            citation=citationdata,
                            download_url=downloadURL,
                            download_date=format(Sys.Date(), "%b %d, %Y"),
                            reference_genome=refgenomeGD,
                            data_pkgname=pkgname,
                            qfun=.quantizer,
                            dqfun=.dequantizer,
                            ecdf=Fn,
                            max_abs_error=max.abs.error,
                            maskREF=maskREFobj)
      saveRDS(obj, file=file.path(pkgname, sprintf("%s.%s.%s.rds", pkgname, afCol, chr)))
    } else {
      warning(sprintf("No MAF values for SNVs in chromosome %s", chr))
    }
  }

  rm(vcfsnvs)
  gc()

  ##
  ## nonSNVs
  ##

  ## fetch nonSNVs coordinates
  rr <- rowRanges(vcfnonsnvs)

  ## fill up missing SeqInfo data
  si <- seqinfo(vcf)
  seqlengths(rr) <- seqlengths(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
  isCircular(rr) <- isCircular(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
  genome(rr) <- genome(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]

  ## clean up the GRanges
  mcols(rr) <- NULL
  names(rr) <- NULL
  gc()

  ## re-order by chromosomal coordinates to deal with wrongly-ordered nonSNVs over multiple VCF lines
  ord <- order(rr)
  rr <- rr[ord]

  ## fetch allele frequency data
  afValues <- info(vcfnonsnvs)
  clsValues <- sapply(afValues, class)
  rm(vcf)
  rm(vcfnonsnvs)
  gc()

  ## re-order by chromosomal coordinates
  afValues <- afValues[ord, ]
  rm(ord)

  ## according to https://samtools.github.io/hts-specs/VCFv4.3.pdf
  ## "It is permitted to have multiple records with the same POS"
  posids <- paste(start(rr), end(rr), sep="-")
  rrbypos <- split(rr, posids)
  rr <- rr[!duplicated(rr)]
  ## put back the genomic order
  posids <- paste(start(rr), end(rr), sep="-")
  mt <- match(posids, names(rrbypos))
  stopifnot(all(!is.na(mt))) ## QC
  rrbypos <- rrbypos[mt]
  saveRDS(rr, file=file.path(pkgname, sprintf("%s.GRnonsnv.%s.rds", pkgname, chr)))

  rm(posids)
  rm(mt)
  gc()

  for (j in seq_along(AFcols)) {
    afCol <- AFcols[j]

    message(sprintf("Processing %s nonSNVs allele frequencies from chromosome %s", afCol, chr))
    mafValuesCol <- afValues[[afCol]]
    if (clsValues[afCol] == "numeric" || clsValues[afCol] == "Numeric") {
      mafValuesCol <- as.numeric(mafValuesCol)
    } else if (clsValues[afCol] == "character") {
      mafValuesCol <- as.numeric(sub(pattern="\\.", replacement="0", mafValuesCol))
    } else if (clsValues[afCol] == "CompressedNumericList") { ## in multiallelic variants take
      mafValuesCol <- sapply(mafValuesCol, max)               ## the maximum allele frequency
    } else if (clsValues[afCol] == "CompressedCharacterList") {
      mafValuesCol <- sapply(NumericList(lapply(mafValuesCol, sub, pattern="\\.", replacement="0")), max)
    } else {
      stop(sprintf("Uknown class for holding AF values (%s)", clsValues[afCol]))
    }

    ## allele frequencies from gnomAD genomes are calculated from alternative alleles,
    ## so for some of them we need to turn them into minor allele frequencies (MAF)
    maskREF <- !is.na(mafValuesCol) & mafValuesCol > 0.5
    if (any(maskREF))
      mafValuesCol[maskREF] <- 1 - mafValuesCol[maskREF]

    mafValuesCol <- relist(mafValuesCol, rrbypos)
    maskREF <- relist(maskREF, rrbypos)
    mafValuesCol <- sapply(mafValuesCol, max) ## in multiallelic variants
                                              ## take the maximum allele frequency
    maskREF <- sapply(maskREF, any) ## in multiallelic variants, when any of the
                                    ## alternate alleles has AF > 0.5, then we
                                    ## set to TRUE maskREF as if the MAF is in REF

    q <- .quantizer(mafValuesCol)
    x <- .dequantizer(q)
    f <- cut(x, breaks=c(0, 10^c(seq(floor(min(log10(x[x!=0]), na.rm=TRUE)),
                                     ceiling(max(log10(x[x!=0]), na.rm=TRUE)), by=1))),
             include.lowest=TRUE)
    err <- abs(mafValuesCol-x)
    max.abs.error <- tapply(err, f, mean, na.rm=TRUE)

    ## build ECDF of MAF values
    if (length(unique(mafValuesCol)) <= 10000) {
      Fn <- ecdf(mafValuesCol)
    } else {
      Fn <- ecdf(sample(mafValuesCol, size=10000, replace=TRUE))
    }

    ## coerce the quantized value vector to an integer-Rle object
    obj <- Rle(q)
    ## coerce the maskREF vector to an integer-Rle object
    maskREFobj <- Rle(maskREF+0L)

    ## coerce to raw-Rle, add metadata and save
    if (any(runValue(obj) != 0)) {
      runValue(obj) <- as.raw(runValue(obj))
      runValue(maskREFobj) <- as.raw(runValue(maskREFobj))
      metadata(obj) <- list(seqname=chr,
                            provider="BroadInstitute",
                            provider_version="r3.0",
                            citation=citationdata,
                            download_url=downloadURL,
                            download_date=format(Sys.Date(), "%b %d, %Y"),
                            reference_genome=refgenomeGD,
                            data_pkgname=pkgname,
                            qfun=.quantizer,
                            dqfun=.dequantizer,
                            ecdf=Fn,
                            max_abs_error=max.abs.error,
                            maskREF=maskREFobj)
      saveRDS(obj, file=file.path(pkgname, sprintf("%s.RLEnonsnv.%s.%s.rds", pkgname, afCol, chr)))
    } else {
      warning(sprintf("No MAF values for nonSNVs in chromosome %s", chr))
    }
  }
}

## Now transform into HDF5 files the previous generated files stored in the package
## MafDb.gnomAD.r3.0.GRCh38 and already installed in the system.
## This function will create one rds file with the general metadata, and one h5 file
## per population. Each h5 file will contain the genomic scores, the max absolute errors
## and the maskREF rle array.

library(HDF5Array)

registerDoParallel(cores=5)

create_h5 <- function(data_pkgname, h5_path){
  # get package path and move to it
  data_dirpath <- system.file("extdata", package=data_pkgname)
  setwd(data_dirpath)
  
  # get populations
  data_pops <- list.files(path=data_dirpath, pattern=data_pkgname)
  data_pops <- data_pops[grep("nonsnv", data_pops, invert=TRUE)]
  data_pops <- gsub(paste0(data_pkgname, "."), "", data_pops)
  data_pops <- gsub("\\..+$", "", data_pops)
  data_pops <- sort(unique(data_pops))
  
  # retrieve metadata
  first_file <- list.files(path=data_dirpath, pattern=data_pkgname)[1]
  first_chrom <- readRDS(first_file)
  pkg_metadata <- metadata(first_chrom)[2:11]
  
  # check if nsites.rds file exists, then save it in metadata
  if("nsites.rds" %in% list.files(path=data_dirpath)){
    nsites <- readRDS("nsites.rds")
    pkg_metadata["nsites"] <- nsites
  }
  
  # save metadata as rds file
  saveRDS(pkg_metadata, file = paste0(h5_path, data_pkgname, ".metadata.rds"))
  
  # remove large in memory variables
  rm(first_file, first_chrom, pkg_metadata)
  
  # h5 file creation by population in parallel
  foreach( pop = data_pops ) %dopar% {
    
    #get chromosomes
    prefix <- sprintf("%s\\.%s\\.", data_pkgname, pop)
    data_chroms <- list.files(path=data_dirpath,
                              pattern=prefix)
    data_chroms <- gsub(prefix, "", data_chroms)
    data_chroms <- gsub("\\.rds", "", data_chroms)
    
    # creathe h5 file
    file <- paste0(h5_path, data_pkgname, ".", pop, ".h5")
    h5createFile(file)
    
    # save each chromosome as a group inside the h5 file
    for(chr in data_chroms){
      h5createGroup(file, group = chr)
      gsco <- readRDS(sprintf("%s.%s.%s.rds", data_pkgname, pop, chr))
      maskREF <- RleArray(metadata(gsco)$maskREF, length(metadata(gsco)$maskREF))
      max_abs_error <-  metadata(gsco)$max_abs_error
      scores <- RleArray(Rle(decode(gsco)), length(Rle(decode(gsco))))
      writeHDF5Array(x = maskREF, filepath = file, name = paste0(chr,"/maskREF"),
                     level = 9, verbose = TRUE)
      writeHDF5Array(x = max_abs_error, filepath = file, name = paste0(chr,"/max_abs_error"),
                     level = 9, verbose = TRUE)
      writeHDF5Array(x = scores, filepath = file, name = paste0(chr, "/scores"),
                     level = 9, verbose = TRUE)
      rm(gsco, maskREF, scores)
    }
  }
}

create_h5("MafDb.gnomAD.r3.0.GRCh38", ".")

Try the GenomicScores package in your browser

Any scripts or data that you put into this service are public.

GenomicScores documentation built on Nov. 8, 2020, 5:21 p.m.