options(width=80)
r Biocpkg("GenomicScores")
is an R package distributed as part of the
Bioconductor project. To install the package, start R and enter:
install.packages("BiocManager") BiocManager::install("GenomicScores")
Once r Biocpkg("GenomicScores")
is installed, it can be loaded with the following command.
library(GenomicScores)
Often, however, r Biocpkg("GenomicScores")
will be automatically loaded when
working with an annotation package that uses r Biocpkg("GenomicScores")
, such
as r Biocpkg("phastCons100way.UCSC.hg19")
.
Genomewide scores assign each genomic position a numeric value denoting an estimated measure of constraint or impact on variation at that position. They are commonly used to filter single nucleotide variants or assess the degree of constraint or functionality of genomic features. Genomic scores are built on the basis of different sources of information such as sequence homology, functional domains, physical-chemical changes of amino acid residues, etc.
One particular example of genomic scores are phastCons scores. They provide a measure of conservation obtained from genomewide alignments using the program phast (Phylogenetic Analysis with Space/Time models) from @siepel05. The r Biocpkg("GenomicScores")
package allows one to retrieve these scores through annotation packages (Section \@ref(retrieval-of-genomic-scores-through-annotation-packages)) or as r Biocpkg("AnnotationHub")
resources (Section \@ref(retrieval-of-genomic-scores-through-annotationhub-resources)).
Often, genomic scores such as phastCons are used within workflows running on
top of R and Bioconductor. The purpose of the r Biocpkg("GenomicScores")
package is to enable
an easy and interactive access to genomic scores within those workflows.
Storing and accessing genomic scores within R is challenging when their values cover large regions of the genome, resulting in gigabytes of double-precision numbers. This is the case, for instance, for phastCons [@siepel05], CADD [@kircher14] or M-CAP [@jagadeesh16] scores.
We address this problem by using lossy compression, also called quantization, coupled with run-length encoding (Rle) vectors. Lossy compression attempts to trade off precision for compression without compromising the scientific integrity of the data [@zender16].
Sometimes, measurements and statistical estimates under certain models generate false precision. False precision is essentialy noise that wastes storage space and it is meaningless from the scientific point of view [@zender16]. In those circumstances, lossy compression not only saves storage space, but also removes false precision.
The use of lossy compression leads to a subset of quantized values much
smaller than the original set of genomic scores, resulting in long runs of
identical values along the genome. These runs of identical values can be
further compressed using the implementation of Rle vectors available in the
r Biocpkg("S4Vectors")
Bioconductor package.
To enable a seamless access to genomic scores stored with quantized values
in compressed vectors the r Biocpkg("GenomicScores")
defines the GScores
class of objects. This class manages the location, loading and dequantization
of genomic scores stored separately on each chromosome.
There are currently four different annotation packages that store genomic
scores and can be accessed using the r Biocpkg("GenomicScores")
package;
see Table \@ref(tab:tableGScores).
Annotation Package | Description
--------------------------- | --------------------------------------------------------------------------------------------
r Biocpkg("phastCons100way.UCSC.hg19")
| phastCons scores derived from the alignment of the human genome (hg19) to other 99 vertebrate species.
r Biocpkg("phastCons100way.UCSC.hg38")
| phastCons scores derived from the alignment of the human genome (hg38) to other 99 vertebrate species.
r Biocpkg("phastCons7way.UCSC.hg38")
| phastCons scores derived from the alignment of the human genome (hg38) to other 6 mammal species.
r Biocpkg("fitCons.UCSC.hg19")
| fitCons scores: fitness consequences of functional annotation for the human genome (hg19).
: (#tab:tableGScores) Bioconductor annotation packages storing genomic scores
This is an example of how genomic scores can be retrieved using the
r Biocpkg("phastCons100way.UCSC.hg19")
package.
Here, a GScores
object is created when the package is loaded.
library(phastCons100way.UCSC.hg19) phast <- phastCons100way.UCSC.hg19 class(phast)
The help page of the GScores
class describes the different methods to access the
information and metadata stored in a GScores
object. To retrieve genomic scores
for specific positions we should use the function gscores()
, as follows.
gscores(phast, GRanges(seqnames="chr22", IRanges(start=50967020:50967025, width=1)))
The r Biocpkg("GenomicScores")
package only loads the scores data from one
sequence to retrieve metadata and from the sequences that are being
queried. Note that now the GScores object has loaded the scores from chr22.
phast
The bibliographic reference to cite the genomic scores stored in a GScores
object can be accessed using the citation()
method either on the package
name or on the GScores
object. The latter is implemented in the
r Biocpkg("GenomicScores")
package and provides a bibentry
object.
citation(phast)
Other methods tracing provenance and other metadata are provider()
,
providerVersion()
, organism()
and seqlevelsStyle()
; please consult
the help page of the GScores
class for a comprehensive list of available
methods.
provider(phast) providerVersion(phast) organism(phast) seqlevelsStyle(phast)
Another way to retrieve genomic scores is by using the r Biocpkg("AnnotationHub")
,
which is a web resource that provides a central location where genomic files
(e.g., VCF, bed, wig) and other resources from standard (e.g., UCSC, Ensembl) and
distributed sites, can be found. A Bioconductor r Biocpkg("AnnotationHub")
web
resource creates and manages a local cache of files retrieved by the user,
helping with quick and reproducible access.
The first step to retrieve genomic scores is to check the ones available to download.
avgs <- readRDS(system.file("extdata", "avgs.rds", package="GenomicScores"))
availableGScores()
avgs
The selected resource can be downloaded with the function getGScores(). After the resource is downloaded the first time, the cached copy will enable a quicker retrieval later.
phast <- getGScores("phastCons100way.UCSC.hg19")
Finally, the phastCons score of a particular genomic position is retrieved exactly in the same we did with the annotation package.
gscores(phast, GRanges(seqnames="chr22", IRanges(start=50967020:50967025, width=1)))
Retrieving genomic scores through AnnotationHub
resources requires an internet
connection and we may want to work with such resources offline. For that purpose,
we can create ourselves an annotation package, such as
phastCons100way.UCSC.hg19,
from a GScores
object corresponding to a downloaded AnnotationHub
resource.
To do that we use the function makeGScoresPackage()
as follows:
makeGScoresPackage(phast, maintainer="Me <me@example.com>", author="Me", version="1.0.0")
cat("Creating package in ./phastCons100way.UCSC.hg19\n")
An argument, destDir
, which by default points to the current working
directory, can be used to change where in the filesystem the package is created.
Afterwards, we should still build and install the package via, e.g.,
R CMD build
and R CMD INSTALL
, to be able to use it offline.
Among the score sets available as AnnotationHub web resources shown in the previous section, two of them, CADD [@kircher14] and M-CAP [@jagadeesh16], provide multiple scores per genomic position that capture the tolerance to mutations of single nucleotides. Using M-CAP scores, we will illustrate how this type of scores are retrieved by default.
obj <- readRDS(system.file("extdata", "mcap.v1.0.hg19.chr22.rds", package="GenomicScores")) mdobj <- metadata(obj) mcap <- GScores(provider=mdobj$provider, provider_version=mdobj$provider_version, download_url=mdobj$download_url, download_date=mdobj$download_date, reference_genome=mdobj$reference_genome, data_pkgname=mdobj$data_pkgname, data_dirpath="../inst/extdata", data_serialized_objnames=c(mcap.v1.0.hg19.chr22.rds="mcap.v1.0.hg19.chr22.rds"), data_tag="MCAP") gscopops <- get(mdobj$data_pkgname, envir=mcap@.data_cache) gscopops[["default"]] <- RleList(compress=FALSE) gscopops[["default"]][[mdobj$seqname]] <- obj assign(mdobj$data_pkgname, gscopops, envir=mcap@.data_cache)
mcap <- getGScores("mcap.v1.0.hg19")
mcap citation(mcap) gr <- GRanges(seqnames="chr22", IRanges(50967020:50967025, width=1)) gscores(mcap, gr)
The previous call to the gscores()
method returns three scores per position
corresponding to the M-CAP scores that estimate the tolerance of mutating the
reference nucleotide at that position to each of the possible alternative
alleles, in alphabetical order. One may directly retrieve the scores for
combinations of reference and alternative alelles using the ref
and alt
arguments of the gscores()
method. See the following example with the
the previous genomic positions and some randomly selected alternative alleles.
library(BSgenome.Hsapiens.UCSC.hg19) refAlleles <- as.character(getSeq(Hsapiens, gr)) altAlleles <- DNA_BASES[(match(refAlleles, DNA_BASES)) %% 4 + 1] cbind(REF=refAlleles, ALT=altAlleles) gscores(mcap, gr, ref=refAlleles, alt=altAlleles)
The input genomic ranges to the gscores()
method may have widths larger than one
nucleotide. In those cases, and when there is only one score per position, the
gscores()
method calculates, by default, the arithmetic mean of the scores across
each range.
gr1 <- GRanges(seqnames="chr22", IRanges(start=50967020:50967025, width=1)) gr1sco <- gscores(phast, gr1) gr1sco mean(gr1sco$default) gr2 <- GRanges("chr22:50967020-50967025") gscores(phast, gr2)
However, we may change the way in which scores from multiple-nucleotide ranges are
summarized with the argument summaryFun
, as follows.
gscores(phast, gr2, summaryFun=max) gscores(phast, gr2, summaryFun=min) gscores(phast, gr2, summaryFun=median)
The specific quantization and dequantization functions are stored as part of
the metadata of a GScores
object and they can be examined with the methods
qfun()
and dqfun()
, respectively. The latter is called by the gscores()
method to retrieve genomic scores.
phastqfun <- qfun(phast) phastqfun phastdqfun <- dqfun(phast) phastdqfun
For single-nucleotide ranges, we can retrieve the quantized genomic scores
using the argument quantized=TRUE
.
gr1sco <- gscores(phast, gr1, quantized=TRUE) gr1sco
Using the dequantization function we can obtain later the genomic scores.
phastdqfun(gr1sco$default)
A single GScores
object may store multiple populations of scores of the same
kind. One such case is when scores are stored with different precision levels.
This is the case for the package r Biocpkg("phastCons100way.UCSC.hg19")
, in
which phastCons scores are compressed rounding values to 1 and 2 decimal
places. To figure out what are the available score populations in a GScores
object we should use the method populations()
:
populations(phast)
Whenever one of these populations is called default
, this is the one used
by default. In other cases we can find out which is the default population as
follows:
defaultPopulation(phast)
To use one of the available score populations we should use the argument
pop
in the corresponding methods, as follows:
gscores(phast, gr1, pop="DP2") qfun(phast, pop="DP2") dqfun(phast, pop="DP2")
We can also change the default scores population to use, as follows:
defaultPopulation(phast) <- "DP2" phast gscores(phast, gr1) qfun(phast) dqfun(phast)
One particular type of genomic scores that are accessible through
the GScores
class is minor allele frequency (MAF) data.
There are currently 17 annotation packages that store MAF values
using the r Biocpkg("GenomicScores")
package, named using the
prefix MafDb
; see Table \@ref(tab:tableMafDb) below.
Annotation Package | Description
--------------------------- | --------------------------------------------------------------------------------------------
r Biocpkg("MafDb.1Kgenomes.phase1.hs37d5")
| MAF data from the 1000 Genomes Project Phase 1 for the human genome version GRCh37.
r Biocpkg("MafDb.1Kgenomes.phase1.GRCh38")
| MAF data from the 1000 Genomes Project Phase 1 for the human genome version GRCh38.
r Biocpkg("MafDb.1Kgenomes.phase3.hs37d5")
| MAF data from the 1000 Genomes Project Phase 3 for the human genome version GRCh37.
r Biocpkg("MafDb.1Kgenomes.phase3.GRCh38")
| MAF data from the 1000 Genomes Project Phase 3 for the human genome version GRCh38.
r Biocpkg("MafDb.ESP6500SI.V2.SSA137.hs37d5")
| MAF data from NHLBI ESP 6500 exomes for the human genome version GRCh37.
r Biocpkg("MafDb.ESP6500SI.V2.SSA137.GRCh38")
| MAF data from NHLBI ESP 6500 exomes for the human genome version GRCh38.
r Biocpkg("MafDb.ExAC.r1.0.hs37d5")
| MAF data from ExAC 60706 exomes for the human genome version GRCh37.
r Biocpkg("MafDb.ExAC.r1.0.GRCh38")
| MAF data from ExAC 60706 exomes for the human genome version GRCh38.
r Biocpkg("MafDb.ExAC.r1.0.nonTCGA.hs37d5")
| MAF data from ExAC 53105 nonTCGA exomes for the human genome version GRCh37.
r Biocpkg("MafDb.ExAC.r1.0.nonTCGA.GRCh38")
| MAF data from ExAC 53105 nonTCGA exomes for the human genome version GRCh38.
r Biocpkg("MafDb.gnomAD.r2.1.hs37d5")
| MAF data from gnomAD 15496 genomes for the human genome version GRCh37.
r Biocpkg("MafDb.gnomAD.r2.1.GRCh38")
| MAF data from gnomAD 15496 genomes for the human genome version GRCh38.
r Biocpkg("MafDb.gnomADex.r2.1.hs37d5")
| MAF data from gnomADex 123136 exomes for the human genome version GRCh37.
r Biocpkg("MafDb.gnomADex.r2.1.GRCh38")
| MAF data from gnomADex 123136 exomes for the human genome version GRCh38.
r Biocpkg("MafDb.gnomAD.r3.0.GRCh38")
| MAF data from gnomAD 71702 genomes for the human genome version GRCh38.
r Biocpkg("MafDb.TOPMed.freeze5.hg19")
| MAF data from NHLBI TOPMed 62784 genomes for the human genome version GRCh37.
r Biocpkg("MafDb.TOPMed.freeze5.hg38")
| MAF data from NHLBI TOPMed 62784 genomes for the human genome version GRCh38.
: (#tab:tableMafDb) Bioconductor annotation packages storing MAF data.
In this context, the scores populations correspond to populations of individuals from which the MAF data were derived, while all MAF data were compressed using a precision of one significant figure for MAF < 0.1 and two significant figures for MAF >= 0.1.
library(MafDb.1Kgenomes.phase1.hs37d5) mafdb <- MafDb.1Kgenomes.phase1.hs37d5 mafdb populations(mafdb)
Consider the following example in which we are interested in MAF values for variants associated
with eye color. We can start by fetching the corresponding variant identifers from the GWAS
catalog using the r Biocpkg("gwascat")
package, as follows.
library(gwascat) gwascat <- makeCurrentGwascat() eyersids <- unique(subsetByTraits(gwascat, tr="Eye color")$SNPS)
eyersids <- readRDS(file.path(system.file("extdata", package="GenomicScores"), "eyersids.rds"))
eyersids
We query the genomic position of the variant identifier through the
r Biocpkg("SNPlocs.Hsapiens.dbSNP144.GRCh37")
package, which stores the
build 144 of the dbSNP database.
library(SNPlocs.Hsapiens.dbSNP144.GRCh37) rng <- snpsById(SNPlocs.Hsapiens.dbSNP144.GRCh37, ids=eyersids) rng
Finally, fetch the MAF values on those positions.
eyecolormafs <- gscores(mafdb, rng, pop=c("AF", "EUR_AF", "AFR_AF")) eyecolormafs
Sometimes, data producers may annotate identifiers to genomic scores, such as dbSNP rs identifiers to MAF values. In such a case, we can directly attempt to fetch genomic scores using those identifiers as follows.
gscores(mafdb, eyersids, pop=c("AF", "EUR_AF", "AFR_AF"))
The following code produces the barplot shown in Figure \@ref(fig:eyecolormafs) illustrating graphically the differences in MAF values from these variants between the three queried populations.
par(mar=c(3, 5, 1, 1)) mafpops <- c("AF", "EUR_AF", "AFR_AF") bp <- barplot(t(as.matrix(mcols(eyecolormafs)[, mafpops])), beside=TRUE, col=c("darkblue", "darkgreen", "darkorange"), ylim=c(0, 0.55), las=1, ylab="Minor allele frequency") axis(1, bp[2, ], 1:length(eyecolormafs)) mtext("Variant", side=1, line=2) legend("topright", mafpops, fill=c("darkblue", "darkgreen", "darkorange"))
A typical use case of the r Biocpkg("GenomicScores")
package is in the context of annotating variants
with genomic scores, such as phastCons conservation scores.
For this purpose, we load the r Biocpkg("VariantAnnotaiton")
and
r Biocpkg("TxDb.Hsapiens.UCSC.hg19.knownGene")
packages. The former will allow us to
read a VCF file and annotate it, and the latter contains the gene annotations from UCSC
that will be used in this process.
library(VariantAnnotation) library(TxDb.Hsapiens.UCSC.hg19.knownGene)
Let's load one of the sample VCF files that form part of the
r Biocpkg("VariantAnnotation")
package.
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation") vcf <- readVcf(fl)##, "hg19") seqlevelsStyle(vcf) txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene seqlevelsStyle(txdb)
Because the chromosome nomenclature from the VCF file (NCBI) is different
from the one with the gene annotations (UCSC) we use the seqlevelsStyle()
function to force our variants having the chromosome nomenclature of the
gene annotations.
seqlevelsStyle(vcf) <- seqlevelsStyle(txdb)
We annotate the location of variants using the function locateVariants()
from the r Biocpkg("VariantAnnotation")
package.
loc <- locateVariants(vcf, txdb, AllVariants()) loc[1:3] table(loc$LOCATION)
Annotate phastCons conservation scores on the variants and store
those annotations as an additional metadata column of the GRanges
object.
For this specific purpose we should use the method score()
that returns
the genomic scores as a numeric vector instead as a metadata column in the
input ranges object.
loc$PHASTCONS <- score(phast, loc) loc[1:3]
Using the following code we can examine the distribution of phastCons conservation scores of variants across the different annotated regions, shown in Figure \@ref(fig:plot1).
x <- split(loc$PHASTCONS, loc$LOCATION) mask <- elementNROWS(x) > 0 boxplot(x[mask], ylab="phastCons score", las=1, cex.axis=1.2, cex.lab=1.5, col="gray") points(1:length(x[mask])+0.25, sapply(x[mask], mean, na.rm=TRUE), pch=23, bg="black")
Next, we can annotate M-CAP and CADD scores as follows. Note that we need to take
care to only query positions of single nucleotide variants, and using the QUERYID
column of the annotations to fetch back reference and alternative alleles from the
original VCF file container.
maskSNVs <- isSNV(vcf)[loc$QUERYID] loc$MCAP <- rep(NA_real_, length(loc)) loc$MCAP[maskSNVs] <- score(mcap, loc[maskSNVs], ref=ref(vcf)[loc$QUERYID[maskSNVs]], alt=alt(vcf)[loc$QUERYID[maskSNVs]])
obj <- readRDS(system.file("extdata", "cadd.v1.3.hg19.chr22.rds", package="GenomicScores")) mdobj <- metadata(obj) cadd <- GScores(provider=mdobj$provider, provider_version=mdobj$provider_version, download_url=mdobj$download_url, download_date=mdobj$download_date, reference_genome=mdobj$reference_genome, data_pkgname=mdobj$data_pkgname, data_dirpath="../inst/extdata", data_serialized_objnames=c(cadd.v1.3.hg19.chr22.rds="cadd.v1.3.hg19.chr22.rds"), data_tag="CADD") gscopops <- get(mdobj$data_pkgname, envir=cadd@.data_cache) gscopops[["default"]] <- RleList(compress=FALSE) gscopops[["default"]][[mdobj$seqname]] <- obj assign(mdobj$data_pkgname, gscopops, envir=cadd@.data_cache)
maskSNVs <- isSNV(vcf)[loc$QUERYID] loc$CADD <- rep(NA_real_, length(loc)) loc$CADD[maskSNVs] <- score(cadd, loc[maskSNVs], ref=ref(vcf)[loc$QUERYID[maskSNVs]], alt=alt(vcf)[loc$QUERYID[maskSNVs]])
Using the code below we can produce the plot of Figure \@ref(fig:mcapvscadd) comparing CADD and M-CAP scores and labeling the location of the variants from which they are derived.
library(RColorBrewer) par(mar=c(4, 5, 1, 1)) hmcol <- colorRampPalette(brewer.pal(nlevels(loc$LOCATION), "Set1"))(nlevels(loc$LOCATION)) plot(jitter(loc$MCAP, factor=2), jitter(loc$CADD, factor=2), pch=19, col=hmcol, xlab="M-CAP scores", ylab="CADD scores", las=1, cex.axis=1.2, cex.lab=1.5, panel.first=grid()) legend("bottomright", levels(loc$LOCATION), pch=19, col=hmcol, inset=0.01)
Finally, we will show how to annotate MAF values on these variants. However,
in this particular case, we should take care of the different sequence styles
(UCSC vs NCBI) and genome version nomenclatures (hg19 vs. hs37d5) between the
annotated variants and the GScores
object.
seqlevelsStyle(loc) <- seqlevelsStyle(mafdb)[1] seqinfo(loc, new2old=match(seqlevels(mafdb), seqlevels(loc))) <- seqinfo(mafdb) maskSNVs <- isSNV(vcf)[loc$QUERYID] loc$MAF[maskSNVs] <- gscores(mafdb, loc[maskSNVs])$AF loc$MAF[!maskSNVs] <- gscores(mafdb, loc[!maskSNVs], type="nonsnrs")$AF loc[1:3]
We also show that by providing reference and alternate alleles through
the arguments ref
and alt
, we can obtain their individual allele
frequencies. The current lossy compression of these values yields their
correct asignment in the case of biallelic variants and an aproximation
in the case of multiallelic ones.
afs <- DataFrame(matrix(NA, nrow=length(loc), ncol=2, dimnames=list(NULL, c("AF_REF", "AF_ALT")))) afs[maskSNVs, ] <- score(mafdb, loc[maskSNVs], ref=ref(vcf)[loc$QUERYID[maskSNVs]], alt=alt(vcf)[loc$QUERYID[maskSNVs]]) afs[!maskSNVs, ] <- score(mafdb, loc[!maskSNVs], ref=ref(vcf)[loc$QUERYID[!maskSNVs]], alt=alt(vcf)[loc$QUERYID[!maskSNVs]], type="nonsnrs") mcols(loc) <- cbind(mcols(loc), afs) loc[1:3]
To have a sense of the extent of the trade-off between precision and compression in a specific case,
we compare here original phastCons scores with the ones obtained by rounding their precision to
one significant figure, and stored in the annotation package phastCons100way.UCSC.hg19
.
Because phastCons scores measure conservation, we sampled uniformly at random one
thousand phastCons scores from differently conserved regions, concretely CDS and 3'UTR.
These sampled scores are included in this package to illustrate this comparison.
Interestingly, among the phastCons scores sampled from 1000 CDS positions,
there are only 198 different values despite the apparently very high precision of some of them.
origpcscoCDS <- readRDS(system.file("extdata", "origphastCons100wayhg19CDS.rds", package="GenomicScores")) origpcscoCDS length(unique(origpcscoCDS$score))
We look more closely the number of significant figures of precision used in these original phastCons scores.
numDecimals <- function(x) { spl <- strsplit(as.character(x+1), "\\.") spl <- sapply(spl, "[", 2) spl[is.na(spl)] <- "" nchar(spl) } nd1 <- numDecimals(origpcscoCDS$score) table(nd1)
Similarly, in 3'UTR regions, only 209 unique phastCons scores are observed.
origpcsco3UTRs <- readRDS(system.file("extdata", "origphastCons100wayhg193UTR.rds", package="GenomicScores")) origpcsco3UTRs length(table(origpcsco3UTRs$score)) nd2 <- numDecimals(origpcsco3UTRs$score) table(nd2)
Reset the default scores population to the one that achieves more compression by rounding to 1 decimal place.
defaultPopulation(phast) <- "default" phast
Retrieve the corresponding phastCons scores stored in the annotation package.
pkgpcscoCDS <- score(phast, origpcscoCDS) pkgpcsco3UTRs <- score(phast, origpcsco3UTRs)
In Figure \@ref(fig:plot2) we show a visual comparison between raw and rounded phastCons scores. The two panels on top compare the whole range of scores observed in CDS (left) and 3'UTR (right) regions. However, the rounding effect can be better observed in the cumulative distributions shown in the panels at the bottom, again for CDS (left) and 3'UTR (right) regions.
In these bottom panels, phastcons scores in CDS and 3'UTR regions display very different cumulative distributions. In CDS regions, most of the genomic scores (>60%) are found between the values of 0.9 and 1.0, while around 25% of the scores are found below 0.1. Indeed, these are the range of values where lossy compression loses more precison. The cumulative distribution of 3'UTR shows the same critical points, with the difference that most of scores are found below 0.1 (>70%).
labelPanel <- function(lab, font=2, cex=2, offsetx=0.05, offsety=0.05) { par(xpd=TRUE) w <- par("usr")[2] - par("usr")[1] h <- par("usr")[4] - par("usr")[3] text(par("usr")[1]-w*offsetx, par("usr")[4]+h*offsety, lab, font=font, cex=cex) par(xpd=FALSE) } par(mfrow=c(2, 2), mar=c(4, 5, 2, 1)) plot(origpcscoCDS$score, jitter(pkgpcscoCDS), pch=19, cex=1, cex.lab=1.2, xaxt="n", yaxt="n", xlab="Original phastCons scores (CDS)", ylab="Compressed phastCons scores (CDS)") axis(1, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) axis(2, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) abline(h=seq(0, 1, by=0.1), v=seq(0, 1, by=0.1), lty=3, col="gray") abline(0, 1) labelPanel(letters[1]) plot(origpcsco3UTRs$score, jitter(pkgpcsco3UTRs), pch=19, cex=1, cex.lab=1.2, xaxt="n", yaxt="n", xlab="Original phastCons scores (3' UTR)", ylab="Compressed phastCons scores (3' UTR)") axis(1, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) axis(2, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) abline(h=seq(0, 1, by=0.1), v=seq(0, 1, by=0.1), lty=3, col="gray") abline(0, 1) labelPanel(letters[2]) ForigCDS <- ecdf(origpcscoCDS$score) FpkgCDS <- ecdf(pkgpcscoCDS) plot(sort(origpcscoCDS$score), ForigCDS(sort(origpcscoCDS$score)), xaxt="n", yaxt="n", cex.lab=1.2, pch=".", cex=4, xlab="phastCons scores (CDS)", ylab="F(x)", ylim=c(0, 1)) axis(1, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) axis(2, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) abline(h=seq(0, 1, by=0.1), v=seq(0, 1, by=0.1), lty=3, col="gray") points(sort(pkgpcscoCDS), FpkgCDS(sort(pkgpcscoCDS)), pch=19, cex=1) legend("topleft", c("Original score", "Rounded score"), pch=c(46, 19), pt.cex=c(4, 1), inset=0.01, bg="white") labelPanel(letters[3]) Forig3UTRs <- ecdf(origpcsco3UTRs$score) Fpkg3UTRs <- ecdf(pkgpcsco3UTRs) plot(sort(origpcsco3UTRs$score), Forig3UTRs(sort(origpcsco3UTRs$score)), xaxt="n", yaxt="n", cex.lab=1.2, pch=".", cex=4, xlab="phastCons scores (3'UTR)", ylab="F(x)", ylim=c(0, 1)) axis(1, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) axis(2, at=seq(0, 1, by=0.1), labels=seq(0, 1, by=0.1), las=1) abline(h=seq(0, 1, by=0.1), v=seq(0, 1, by=0.1), lty=3, col="gray") points(sort(pkgpcsco3UTRs), Fpkg3UTRs(sort(pkgpcsco3UTRs)), pch=19, cex=1) legend("topleft", c("Original score", "Rounded score"), pch=c(46, 19), pt.cex=c(4, 1), inset=0.01, bg="white") labelPanel(letters[4])
The bottom plots in Figure \@ref(fig:plot2) also reveal that when the cumulative distribution is of interest, such as in the context of filtering genetic variants above or below certain threshold of conservation, the quantization of phastCons scores to 1 decimal place provides sufficient precision for a wide range of conservation values.
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.