Nothing
## This README file explains the steps to download and freeze in this
## annotation package the allele frequencies of the Phase 3 of the
## 1000 Genomes Project. If you use these data please cite the following publication:
## The 1000 Genomes Project Consortium. A global reference for human genetic variation.
## Nature, 526:68-74, 2015.
## doi: http://dx.doi.org/10.1038/nature15393
## The data were downloaded from the FTP server of the 1000 Genomes Project as follows:
##
## wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz
## wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz.tbi
## The data were first splitted into tabix VCF files per chromosome as follows:
##
## mkdir -p phase3_by_chr
## allchr=`tabix -l ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz`
## for chr in $allchr ; do {
## echo chr$chr
## tabix -h ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz $chr | bgzip -c > phase3_by_chr/chr$chr.vcf.gz
##
## if [ -s phase3_by_chr/chr$chr.vcf.gz ] ; then
## tabix -p vcf phase3_by_chr/chr$chr.vcf.gz
## else
## rm phase3_by_chr/chr$chr.vcf.gz
## fi
## } done
## The following R script processes the downloaded and splitted data
## to transform the allele frequencies into minor allele frequencies
## and store them using only one significant digit for values < 0.1,
## and two significant digits for values > 0.1, to reduce the memory
## footprint through RleList objects
library(Rsamtools)
library(GenomicRanges)
library(GenomeInfoDb)
library(VariantAnnotation)
library(BSgenome.Hsapiens.1000genomes.hs37d5)
library(doParallel)
downloadURL <- "http://www.internationalgenome.org/data"
citationdata <- bibentry(bibtype="Article",
author=person("The 1000 Genomes Project Consortium"),
title="A global reference for human genetic variation",
journal="Nature",
volume="526",
pages="68-74",
year="2015",
doi="10.1038/nature15393")
registerDoParallel(cores=8)
## quantizer function. it maps input real-valued [0, 1] allele frequencies
## to positive integers [1, 255] so that each of them can be later
## coerced into a single byte (raw type). allele frequencies between 0.1 and 1.0
## are quantized using two significant digits, while allele frequencies between
## 0 and 0.1 are quantized using one significant digit. quantized values are
## add up one unit to make them positive and keep the value 0 to encode for NAs
## since there is no NA value in the raw class (Sec. 3.3.4 NA handling, R Language Definition)
.quantizer <- function(x) {
.ndec <- function(x) {
spl <- strsplit(as.character(x+1), "\\.")
spl <- sapply(spl, "[", 2)
spl[is.na(spl)] <- ""
nchar(spl)
}
maskNAs <- is.na(x)
x[!maskNAs & x > 0.1] <- signif(x[!maskNAs & x > 0.1], digits=2)
x[!maskNAs & x <= 0.1] <- signif(x[!maskNAs & x <= 0.1], digits=1)
x[maskNAs] <- NA
nd <- .ndec(x)
x[nd < 3] <- x[nd < 3] * 100
x[nd >= 3] <- x[nd >= 3] * 10^nd[nd >= 3] + 100 + (nd[nd >= 3] - 3) * 10
x <- x + 1
x[maskNAs] <- 0
q <- as.integer(sprintf("%.0f", x)) ## coercing through character is necessary
## to deal with limitations of computer
## arithmetic such as with as.integer(0.29*100)
if (any(q > 255))
stop("current number of quantized values > 255 and cannot be stored into one byte")
q
}
attr(.quantizer, "description") <- "quantize [0.1-1] with 2 significant digits and [0-0.1) with 1 significant digit"
## dequantizer function
.dequantizer <- function(q) {
x <- q <- as.integer(q)
x[x == 0L] <- NA
x <- (x - 1L) / 100L
maskNAs <- is.na(x)
q <- q - 1L
sel <- !maskNAs & q > 100L
x[sel] <- ((q[sel] - 100L) %% 10L) / 10^(floor((q[sel] - 100L) / 10L) + 3L)
x
}
attr(.dequantizer, "description") <- "dequantize [0-100] dividing by 100, [101-255] subtract 100, take modulus 10 and divide by the corresponding power in base 10"
vcfFilename <- "ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz"
genomeversion <- "hs37d5"
pkgname <- sprintf("MafDb.1Kgenomes.phase3.%s", genomeversion)
dir.create(pkgname)
path2vcfs <- "/projects_fg/GenomicScores/1000G/Phase3"
vcfHeader <- scanVcfHeader(file.path(path2vcfs, vcfFilename))
Hsapiens <- hs37d5
## no genome reference information in the VCF header
## stopifnot(all(seqlengths(vcfHeader)[1:25] == seqlengths(Hsapiens)[1:25])) ## QC
## save the GenomeDescription object
refgenomeGD <- GenomeDescription(organism=organism(Hsapiens),
common_name=commonName(Hsapiens),
provider=provider(Hsapiens),
provider_version=providerVersion(Hsapiens),
release_date=releaseDate(Hsapiens),
release_name=releaseName(Hsapiens),
seqinfo=seqinfo(Hsapiens))
saveRDS(refgenomeGD, file=file.path(pkgname, "refgenomeGD.rds"))
## read INFO column data
infoCols <- rownames(info(vcfHeader))
AFcols <- infoCols[c(which(infoCols == "AF"), grep("_AF", infoCols))]
message("Starting to process variants")
## restrict VCF INFO columns to AC and AN values
vcfPar <- ScanVcfParam(geno=NA,
fixed=c("ALT", "FILTER"),
info=AFcols)
tbx <- open(TabixFile(file.path(path2vcfs, vcfFilename)))
tbxchr <- sortSeqlevels(seqnamesTabix(tbx))
close(tbx)
foreach (chr=tbxchr) %dopar% {
## the whole VCF for the chromosome into main memory
vcf <- readVcf(sprintf("%s/phase3_by_chr/chr%s.vcf.gz", path2vcfs, chr),
genome=genomeversion, param=vcfPar)
## discard variants not passing all FILTERS
mask <- fixed(vcf)$FILTER == "PASS"
if (any(mask)) {
vcf <- vcf[mask, ]
} else {
stop("No variants with FILTER=PASS")
}
gc()
## mask variants where all alternate alleles are SNVs
evcf <- expand(vcf)
maskSNVs <- sapply(relist(isSNV(evcf), alt(vcf)), all)
rm(evcf)
gc()
## treat snvs and nonSNVs separately
vcfsnvs <- vcf[maskSNVs, ]
vcfnonsnvs <- vcf[!maskSNVs, ]
##
## SNVs
##
## fetch SNVs coordinates
rr <- rowRanges(vcfsnvs)
## clean up the ranges
mcols(rr) <- NULL
names(rr) <- NULL
gc()
## fill up SeqInfo data
si <- seqinfo(vcf)
seqlengths(rr) <- seqlengths(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
isCircular(rr) <- isCircular(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
genome(rr) <- genome(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
## according to https://samtools.github.io/hts-specs/VCFv4.3.pdf
## "It is permitted to have multiple records with the same POS"
## and according to the release notes of gnomAD v2.1
## "all multi-allelic sites have been split. This means that
## multiple lines now have the same chromosome and position."
## in such a case we take the maximum MAF by looking at repeated positions
rrbypos <- split(rr, start(rr))
rr <- rr[!duplicated(rr)]
## put back the genomic order
mt <- match(as.character(start(rr)), names(rrbypos))
stopifnot(all(!is.na(mt))) ## QC
rrbypos <- rrbypos[mt]
rm(mt)
gc()
## fetch allele frequency data
afValues <- info(vcfsnvs)
clsValues <- sapply(afValues, class)
for (j in seq_along(AFcols)) {
afCol <- AFcols[j]
message(sprintf("Processing %s SNVs from chromosome %s", afCol, chr))
mafValuesCol <- afValues[[afCol]]
if (clsValues[afCol] == "numeric" || clsValues[afCol] == "Numeric") {
mafValuesCol <- as.numeric(mafValuesCol)
} else if (clsValues[afCol] == "CompressedNumericList") { ## in multiallelic variants take
mafValuesCol <- sapply(mafValuesCol, max) ## the maximum allele frequency
} else {
stop(sprintf("Uknown class for holding AF values (%s)", clsValues[afCol]))
}
## allele frequencies from 1000 genomes are calculated from alternative alleles,
## so for some of them we need to turn them into minor allele frequencies (MAF)
maskREF <- !is.na(mafValuesCol) & mafValuesCol > 0.5
if (any(maskREF))
mafValuesCol[maskREF] <- 1 - mafValuesCol[maskREF]
mafValuesCol <- relist(mafValuesCol, rrbypos)
maskREF <- relist(maskREF, rrbypos)
mafValuesCol <- sapply(mafValuesCol, max) ## in multiallelic variants
## take the maximum allele frequency
maskREF <- sapply(maskREF, any) ## in multiallelic variants, when any of the
## alternate alleles has AF > 0.5, then we
## set to TRUE maskREF as if the MAF is in REF
q <- .quantizer(mafValuesCol)
x <- .dequantizer(q)
f <- cut(x, breaks=c(0, 10^c(seq(floor(min(log10(x[x!=0]), na.rm=TRUE)),
ceiling(max(log10(x[x!=0]), na.rm=TRUE)), by=1))),
include.lowest=TRUE)
err <- abs(mafValuesCol-x)
max.abs.error <- tapply(err, f, mean, na.rm=TRUE)
## build an integer-Rle object using the 'coverage()' function
obj <- coverage(rr, weight=q)[[chr]]
## build an integer-Rle object of maskREF using the 'coverage()' function
maskREFobj <- coverage(rr, weight=maskREF+0L)[[chr]]
## build ECDF of MAF values
if (length(unique(mafValuesCol)) <= 10000) {
Fn <- ecdf(mafValuesCol)
} else {
Fn <- ecdf(sample(mafValuesCol, size=10000, replace=TRUE))
}
## coerce to raw-Rle, add metadata and save
if (any(runValue(obj) != 0)) {
runValue(obj) <- as.raw(runValue(obj))
runValue(maskREFobj) <- as.raw(runValue(maskREFobj))
metadata(obj) <- list(seqname=chr,
provider="IGSR",
provider_version="Phase3",
citation=citationdata,
download_url=downloadURL,
download_date=format(Sys.Date(), "%b %d, %Y"),
reference_genome=refgenomeGD,
data_pkgname=pkgname,
qfun=.quantizer,
dqfun=.dequantizer,
ecdf=Fn,
max_abs_error=max.abs.error,
maskREF=maskREFobj)
saveRDS(obj, file=file.path(pkgname, sprintf("%s.%s.%s.rds", pkgname, afCol, chr)))
} else {
warning(sprintf("No MAF values for SNVs in chromosome %s", chr))
}
}
rm(vcfsnvs)
gc()
##
## nonSNVs
##
## fetch nonSNVs coordinates
rr <- rowRanges(vcfnonsnvs)
## fill up SeqInfo data
si <- seqinfo(vcf)
seqlengths(rr) <- seqlengths(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
isCircular(rr) <- isCircular(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
genome(rr) <- genome(seqinfo(Hsapiens))[match(seqnames(si), seqnames(seqinfo(Hsapiens)))]
## clean up the GRanges
mcols(rr) <- NULL
names(rr) <- NULL
gc()
## re-order by chromosomal coordinates to deal with wrongly-ordered nonSNVs over multiple VCF lines
ord <- order(rr)
rr <- rr[ord]
## fetch allele frequency data
afValues <- info(vcfnonsnvs)
clsValues <- sapply(afValues, class)
rm(vcf)
rm(vcfnonsnvs)
gc()
## re-order by chromosomal coordinates
afValues <- afValues[ord, ]
## according to https://samtools.github.io/hts-specs/VCFv4.3.pdf
## "It is permitted to have multiple records with the same POS"
posids <- paste(start(rr), end(rr), sep="-")
rrbypos <- split(rr, posids)
rr <- rr[!duplicated(rr)]
## put back the genomic order
posids <- paste(start(rr), end(rr), sep="-")
mt <- match(posids, names(rrbypos))
stopifnot(all(!is.na(mt))) ## QC
rrbypos <- rrbypos[mt]
saveRDS(rr, file=file.path(pkgname, sprintf("%s.GRnonsnv.%s.rds", pkgname, chr)))
rm(ord)
rm(posids)
rm(mt)
gc()
for (j in seq_along(AFcols)) {
afCol <- AFcols[j]
message(sprintf("Processing %s nonSNVs from chromosome %s", afCol, chr))
mafValuesCol <- afValues[[afCol]]
if (clsValues[afCol] == "numeric" || clsValues[afCol] == "Numeric") {
mafValuesCol <- as.numeric(mafValuesCol)
} else if (clsValues[afCol] == "CompressedNumericList") { ## in multiallelic variants take
mafValuesCol <- sapply(mafValuesCol, max) ## the maximum allele frequency
} else {
stop(sprintf("Uknown class for holding AF values (%s)", clsValues[afCol]))
}
## allele frequencies from 1000 genomes are calculated from alternative alleles,
## so for some of them we need to turn them into minor allele frequencies (MAF)
## for biallelic variants, in those cases the MAF comes from the REF allele
maskREF <- !is.na(mafValuesCol) & mafValuesCol > 0.5
if (any(maskREF))
mafValuesCol[maskREF] <- 1 - mafValuesCol[maskREF]
mafValuesCol <- relist(mafValuesCol, rrbypos)
maskREF <- relist(maskREF, rrbypos)
mafValuesCol <- sapply(mafValuesCol, max) ## in multiallelic variants
## take the maximum allele frequency
maskREF <- sapply(maskREF, any) ## in multiallelic variants, when any of the
## alternate alleles has AF > 0.5, then we
## set to TRUE maskREF as if the MAF is in REF
q <- .quantizer(mafValuesCol)
x <- .dequantizer(q)
f <- cut(x, breaks=c(0, 10^c(seq(floor(min(log10(x[x!=0]), na.rm=TRUE)),
ceiling(max(log10(x[x!=0]), na.rm=TRUE)), by=1))),
include.lowest=TRUE)
err <- abs(mafValuesCol-x)
max.abs.error <- tapply(err, f, mean, na.rm=TRUE)
## build ECDF of MAF values
if (length(unique(mafValuesCol)) <= 10000) {
Fn <- ecdf(mafValuesCol)
} else {
Fn <- ecdf(sample(mafValuesCol, size=10000, replace=TRUE))
}
## coerce the quantized value vector to an integer-Rle object
obj <- Rle(q)
## coerce the maskREF vector to an integer-Rle object
maskREFobj <- Rle(maskREF+0L)
## coerce to raw-Rle, add metadata and save
if (any(runValue(obj) != 0)) {
runValue(obj) <- as.raw(runValue(obj))
runValue(maskREFobj) <- as.raw(runValue(maskREFobj))
metadata(obj) <- list(seqname=chr,
provider="IGSR",
provider_version="Phase3",
citation=citationdata,
download_url=downloadURL,
download_date=format(Sys.Date(), "%b %d, %Y"),
reference_genome=refgenomeGD,
data_pkgname=pkgname,
qfun=.quantizer,
dqfun=.dequantizer,
ecdf=Fn,
max_abs_error=max.abs.error,
maskREF=maskREFobj)
saveRDS(obj, file=file.path(pkgname, sprintf("%s.RLEnonsnv.%s.%s.rds", pkgname, afCol, chr)))
} else {
warning(sprintf("No MAF values for nonSNVs in chromosome %s", chr))
}
}
}
## save rsIDs assignments from the 1000 genomes project
## streaming through the whole file
vcfPar <- ScanVcfParam(geno=NA,
fixed=c("ALT", "FILTER"),
info=NA)
tbx <- TabixFile(file.path(path2vcfs, vcfFilename), yieldSize=1000000)
open(tbx)
message("Starting to process variant identifiers")
rsIDs <- character(0) ## to store rsIDs annotated by the 1000 genomes project
rsIDgp <- GPos() ## to store positions of rsIDs
maskSNVs <- logical(0) ## to store a mask whether the variant is an SNV or not
nVar <- 0
while (nrow(vcf <- readVcf(tbx, genome=genomeversion, param=vcfPar))) {
## discard variants not passing all FILTERS
mask <- fixed(vcf)$FILTER == "PASS"
if (any(mask)) {
vcf <- vcf[mask, ]
} else {
stop("No variants with FILTER=PASS")
}
gc()
nVar <- nVar + nrow(vcf)
rr <- rowRanges(vcf)
whrsIDs <- grep("^rs", names(rr))
evcf <- expand(vcf)
maskSNVs <- c(maskSNVs, sapply(relist(isSNV(evcf), alt(vcf)), all)[whrsIDs])
rm(evcf)
gc()
rrTmp <- rr[whrsIDs]
mcols(rrTmp) <- NULL
rrTmp <- resize(rrTmp, width=1, fix="start", ignore.strand=TRUE)
idTmp <- names(rrTmp)
names(rrTmp) <- NULL
gpTmp <- as(rrTmp, "GPos")
rsIDs <- c(rsIDs, idTmp)
rsIDgp <- c(rsIDgp, gpTmp)
rm(rrTmp)
rm(gpTmp)
rm(idTmp)
gc()
message(sprintf("%d variant identifiers processed", nVar))
}
close(tbx)
## save total number of variants
saveRDS(nVar, file=file.path(pkgname, "nsites.rds"))
## store mask flagging SNVs
rsIDgp$isSNV <- Rle(maskSNVs)
## double check that all identifiers start with 'rs'
stopifnot(identical(grep("^rs", rsIDs), 1:length(rsIDs))) ## QC
## there are multiple rsID assignments separated
## by semicolons, take the first one
rsIDs <- strsplit(rsIDs, ";")
rsIDs <- sapply(rsIDs, "[", 1)
## chop the 'rs' prefix and convert the character ids into integer values
rsIDs <- as.integer(sub(pattern="^rs", replacement="", x=rsIDs))
## calculate the indices that lead to an increasing values of the (integer) ids
rsIDidx <- order(rsIDs)
## order increasingly the integer values of rs IDs
rsIDs <- rsIDs[rsIDidx]
## save the objects that enable the search for rs ID
saveRDS(rsIDs, file=file.path(pkgname, "rsIDs.rds"))
saveRDS(rsIDidx, file=file.path(pkgname, "rsIDidx.rds"))
saveRDS(rsIDgp, file=file.path(pkgname, "rsIDgp.rds"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.