Nothing
# Package: GenomicOZone
# MD_visualize_zones.R
# - Generate visualizations
# Created:
# Hua Zhong
# Dec 25, 2018
#' @importFrom stats median mad
#' @importFrom plyr ddply
data_summary <- function(data, varname, groupnames){
summary_func <- function(x, col){
c(Median = median(x[[col]], na.rm=TRUE),
Mad = mad(x[[col]], na.rm=TRUE),
Min = min(x[[col]], na.rm=TRUE),
Max = max(x[[col]], na.rm=TRUE))
}
data_sum <- ddply(data, groupnames, .fun=summary_func, varname)
return(data_sum)
}
#' @import ggplot2
get_legend<-function(p){
tmp <- ggplot_gtable(ggplot_build(p))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)
}
#' @import ggplot2
#' @importFrom grDevices dev.off pdf
#' @importFrom gridExtra grid.arrange
#' @importFrom utils setTxtProgressBar tail txtProgressBar
MD.Zone.Gene.path.plots <- function(GOZ.ds, plot.file, alpha = 0.05, min.effect.size = 0.8, log.exp = TRUE,
plot.all.zones = FALSE){ #cancer.genes = NULL
colData <- GOZ.ds$input.data$colData
Zone.GRanges <- GOZ.ds$runtime.var$zone.GRanges
Gene.GRanges <- GOZ.ds$runtime.var$data.GRanges
Gene.GRanges.names <- if(!is.null(Gene.GRanges$external_gene_name)){
Gene.GRanges$external_gene_name
}else if(!is.null(Gene.GRanges$Gene.name)){
Gene.GRanges$Gene.name
}else{
names(Gene.GRanges)
}
data.mat <- NULL
p.val.specific <- NULL
effect.size.specific <- NULL
if(!is.null(Zone.GRanges$p.value.adj)){
X.value.var <- GOZ.ds$runtime.var$design.treatment.var
X.value.unique <- GOZ.ds$runtime.var$design.treatment.vals
Condition.label <- if(paste(X.value.var, ".label", sep='') %in% colnames(colData)){
paste(X.value.var, ".label", sep='')
}else{
X.value.var
}
sample.rep.pick <- lapply(X.value.unique, function(y){
return(which(colData[,X.value.var] == y))
})
names(sample.rep.pick) <- X.value.unique
data.mat <- GOZ.ds$input.data$data[names(GOZ.ds$runtime.var$data.GRanges),]
p.val.specific <- Zone.GRanges$p.value.adj
effect.size.specific <- Zone.GRanges$effect.size
names(p.val.specific) <- names(Zone.GRanges)
names(effect.size.specific) <- names(Zone.GRanges)
}else{
stop("Gene pattern not ploted, because less than 2 differential conditions specified in colData!")
}
# effect.size.specific.threshold <- floor(length(effect.size.specific) * effect.size.rate)
# if(effect.size.specific.threshold < 1){
# effect.size.specific.threshold <- 1
# }
# if(effect.size.specific.threshold > length(effect.size.specific)){
# effect.size.specific.threshold <- length(effect.size.specific)
# }
effect.size.specific.threshold <- min.effect.size
#sort(effect.size.specific, na.last = TRUE, decreasing = TRUE)[effect.size.specific.threshold]
zones.all <- names(Zone.GRanges)[order(effect.size.specific, na.last = TRUE, decreasing = TRUE)]
zone.signif <- !is.na(p.val.specific) & !is.na(effect.size.specific) &
p.val.specific <= alpha &
effect.size.specific >= effect.size.specific.threshold
zone.signif <- zone.signif[zones.all]
zone.color <- sapply(zone.signif, function(x){
if(x){
return("#F8766D")
}else{
return("gray")
}
})
plots.all <- vector("list", length(zones.all))
names(plots.all) <- zones.all
if(!plot.all.zones && sum(zone.signif) == 0){
message("No significant differential expressed zones!")
return(NULL)
}
zones.all.process <- if(plot.all.zones) seq_len(length(zones.all)) else seq_len(length(zones.all))[zone.signif]
#pb <- txtProgressBar(min = 1, max = length(zones.all.process), style = 3)
for (pb.i in zones.all.process) {
#setTxtProgressBar(pb, pb.i)
zone <- zones.all[pb.i]
#print(paste("[", which(zones.all == zone), "/", length(zones.all), "]: ", zone, sep=''))
gene.pick <- Gene.GRanges$zone == zone
data.mat.sub <- data.mat[names(Gene.GRanges)[gene.pick] ,, drop = FALSE]
rownames(data.mat.sub) <- Gene.GRanges.names[gene.pick]
plots.all.sub <- vector("list", 3)
# if(!is.null(cancer.genes)){
# rownames(data.mat.sub)[rownames(data.mat.sub) %in% cancer.genes] <- paste(rownames(data.mat.sub)[rownames(data.mat.sub) %in% cancer.genes], '*', sep='')
# }
data.mat.sub.exp <- if(log.exp) log10(data.mat.sub + 1) else data.mat.sub
data.mat.sub.rank <- do.call("rbind", Obtain.gene.rank(data.mat.sub))
rownames(data.mat.sub.exp) <- rownames(data.mat.sub)
colnames(data.mat.sub.exp) <- colnames(data.mat.sub)
rownames(data.mat.sub.rank) <- rownames(data.mat.sub)
colnames(data.mat.sub.rank) <- colnames(data.mat.sub)
zone.gene.exp.df <- data.frame(Y.value = c(data.mat.sub.exp),
X.value = factor(rep(colData[colnames(data.mat.sub.exp), Condition.label],
each = nrow(data.mat.sub.exp)), levels = X.value.unique),
Gene = rep(rownames(data.mat.sub.exp), ncol(data.mat.sub.exp)))
zone.gene.exp.df.sum <- data_summary(zone.gene.exp.df, varname="Y.value", groupnames=c("X.value", "Gene"))
zone.gene.exp.df.sum.order <- zone.gene.exp.df.sum[zone.gene.exp.df.sum$X.value == tail(levels(zone.gene.exp.df.sum$X.value), 1),]
zone.gene.exp.df.sum.order <- zone.gene.exp.df.sum.order[order(zone.gene.exp.df.sum.order$Median, decreasing = TRUE),]
zone.gene.exp.df.sum <- zone.gene.exp.df.sum[order(match(zone.gene.exp.df.sum$Gene, unique(zone.gene.exp.df.sum.order$Gene))),]
zone.gene.exp.df.sum$Gene <- factor(as.character(zone.gene.exp.df.sum$Gene), levels = as.character(unique(zone.gene.exp.df.sum$Gene)))
gene.labels <- as.character(levels(zone.gene.exp.df.sum$Gene))
zone.gene.rank.df <- data.frame(Y.value = c(data.mat.sub.rank),
X.value = factor(rep(colData[colnames(data.mat.sub.rank), Condition.label],
each = nrow(data.mat.sub.rank)), levels = X.value.unique),
Gene = rep(rownames(data.mat.sub.rank), ncol(data.mat.sub.rank)))
legend.angle <- if(length(X.value.unique) >= 3) 30 else 0
legend.angle.adjust <- if(length(X.value.unique) >= 3) 1 else 0.5
col.num <- max(c(1, ceiling(length(unique(zone.gene.exp.df.sum$Gene)) / 23)))
legend.font.size <- if(col.num <= 2) 8 else 6
#if(length(unique(zone.gene.exp.df.sum$Gene)) > 26) 2 else 1
p <- ggplot(data = zone.gene.exp.df.sum, aes_string(x = "X.value", y = "Median", color = "Gene", group = "Gene")) +
geom_hline(yintercept=0) +
geom_errorbar(aes_string(ymin = "Min", ymax = "Max"), width=.1) +
geom_line() +
# expand_limits(x = c(1, length(levels(zone.gene.exp.df$X.value)))) +
ggtitle(paste(zone, ": ", start(Zone.GRanges[zone]), " - ", end(Zone.GRanges[zone]), '\n',
"Adjusted p-value: ", signif(p.val.specific[zone], digits = 3), '\n',
"Effect size: ", signif(effect.size.specific[zone], digits = 3), sep="")) +
labs(x = GOZ.ds$runtime.var$design.treatment.var, y = "Log10(exp+1)") +
theme(plot.title = element_text(hjust = 0.5, color = zone.color[pb.i]),
#axis.text.x = element_text(angle = 90, hjust = 1),
axis.title.x=element_blank(),
axis.text.x=element_blank(),
#panel.grid.major = element_blank(),
#panel.grid.minor = element_blank(),
legend.title = element_blank(),
legend.position = "right", #c(-Inf,Inf),
legend.key = element_rect(size = 0.5),
legend.key.size = unit(0.5, 'lines'),
plot.margin = unit(c(1,0,0,1), "lines"),
legend.margin=margin(t = 0, unit='cm'),
legend.text=element_text(size=legend.font.size)
) +
guides(color=guide_legend(ncol=col.num, byrow=TRUE))
p.legend <- get_legend(p)
p <- p + theme(legend.position="none")
p.box <- ggplot(data = zone.gene.rank.df, aes_string(x = "X.value", y = "Y.value", group = "X.value")) +
geom_hline(yintercept=0) +
geom_violin(fill = "#00BFC4", trim=TRUE) +
geom_boxplot(width = 0.15, fill="white") + #color = "#00BFC4",
stat_summary(data = zone.gene.rank.df, aes_string(x = "X.value", y = "Y.value", group = "1"),
fun.y = "median", geom = "line", color = "#F8766D") +
# expand_limits(x = c(1, length(levels(zone.gene.rank.df$X.value)))) +
# ggtitle(paste(zone, ": ", start(Zone.GRanges[zone]), " - ", end(Zone.GRanges[zone]), " (", length(gene.labels), " genes)", '\n',
# "Adjusted p-value: ", signif(p.val.specific[zone], digits = 3), sep="")) +
labs(x = GOZ.ds$runtime.var$design.treatment.var, y = "Gene rank") +
theme(plot.title = element_blank(),
axis.title.x=element_blank(),
axis.text.x = element_text(size = 13, angle = legend.angle, hjust = legend.angle.adjust),
#panel.grid.major = element_blank(),
#panel.grid.minor = element_blank(),
legend.title=element_blank(),
legend.position="none",
plot.margin = unit(c(1,0,1,1), "lines")
)
plots.all.sub[[1]] <- p
plots.all.sub[[2]] <- p.box
plots.all.sub[[3]] <- p.legend
plots.all[[zone]] <- plots.all.sub
}
if(plot.all.zones){
plot.file.tmp <- if(substr(plot.file, nchar(plot.file)-3, nchar(plot.file)) == ".pdf"){
paste(substr(plot.file, 1, nchar(plot.file)-4), "_all_zones.pdf", sep='')
}else{
paste(plot.file, "_all_zones.pdf", sep='')
}
pdf(plot.file.tmp, width = length(X.value.unique)/2+4, height = 4.5)
#pb <- txtProgressBar(min = 0, max = length(plots.all), style = 3)
for (i in seq_len(length(plots.all))) {
#setTxtProgressBar(pb, i)
if(length(X.value.unique) >= 3){
grid.arrange(grobs = plots.all[[i]],
layout_matrix = rbind(c(1,3), c(2,3)),
widths = c(2.7, 1), heights = c(4.5,3.5))
}else{
grid.arrange(grobs = plots.all[[i]],
layout_matrix = rbind(c(1,3), c(2,3)),
widths = c(2.7, 1), heights = c(5,3))
}
}
dev.off()
}
plots.all.signif <- plots.all[names(zone.signif[zone.signif])]
if(length(plots.all.signif) > 0){
pdf(plot.file, width = length(X.value.unique)/2+4, height = 4.5)
#pb <- txtProgressBar(min = 0, max = length(plots.all.signif), style = 3)
for (i in seq_len(length(plots.all.signif))) {
#setTxtProgressBar(pb, i)
if(length(X.value.unique) >= 3){
grid.arrange(grobs = plots.all.signif[[i]],
layout_matrix = rbind(c(1,3), c(2,3)),
widths = c(2.7, 1), heights = c(4.5,3.5))
}else{
grid.arrange(grobs = plots.all.signif[[i]],
layout_matrix = rbind(c(1,3), c(2,3)),
widths = c(2.7, 1), heights = c(5,3))
}
}
dev.off()
}else{
message("No significant differential expressed zones!")
}
}
#' @import ggplot2
#' @importFrom GenomeInfoDb seqlevels seqlengths
#' @importFrom grDevices dev.off pdf
#' @importFrom utils setTxtProgressBar txtProgressBar
MD.Chromosome.heatmap <- function(GOZ.ds, plot.file, alpha = 0.05, min.effect.size = 0.8,
plot.width = NULL, plot.height = NULL){
colData <- GOZ.ds$input.data$colData
rownames(colData) <- colData[,1]
Genes.GRanges <- GOZ.ds$runtime.var$data.GRanges
Zone.GRanges <- GOZ.ds$runtime.var$zone.GRanges
Exp <- GOZ.ds$input.data$data
effect.size.threshold <- min.effect.size
#sort(Zone.GRanges$effect.size, na.last = TRUE, decreasing = TRUE)[floor(length(Zone.GRanges) * effect.size.rate)]
Gene.npt.all.zero <- rownames(Exp)[apply(Exp, 1, function(x){!all(x == 0)})]
plots.all <- vector("list", length(seqlevels(Zone.GRanges)))
names(plots.all) <- seqlevels(Zone.GRanges)
for (chr in seqlevels(Zone.GRanges)) {
Zone.GRanges.chr <- Zone.GRanges[seqnames(Zone.GRanges) == chr]
Genes.GRanges.chr <- Genes.GRanges[seqnames(Genes.GRanges) == chr]
Zone.GRanges.chr.signif <- Zone.GRanges.chr[Zone.GRanges.chr$p.value.adj <= alpha &
Zone.GRanges.chr$effect.size >= effect.size.threshold]
Gene.pick <- names(Genes.GRanges.chr)[names(Genes.GRanges.chr) %in% Gene.npt.all.zero]
Genes.GRanges.chr <- Genes.GRanges.chr[Gene.pick]
Rank.mat.chr <- GOZ.ds$runtime.var$zone.stat$Zone.stat.norm.per.sample[names(Zone.GRanges.chr),, drop = FALSE]
chr.plot.df <- data.frame(Zone = factor(rep(names(Zone.GRanges.chr), ncol(Rank.mat.chr)), levels = names(Zone.GRanges.chr)),
#Gene = rep(names(Genes.GRanges.chr), ncol(Rank.mat.chr)),
Exp = c(Rank.mat.chr),
Sample = rep(colnames(Rank.mat.chr), each = nrow(Rank.mat.chr)),
Condition = factor(rep(colData[colnames(Rank.mat.chr), GOZ.ds$runtime.var$design.treatment.var],
each = nrow(Rank.mat.chr)),
levels = levels(colData[,GOZ.ds$runtime.var$design.treatment.var])))
p <- ggplot() +
geom_tile(data = chr.plot.df, aes_string(x = "Zone", y = "Sample", fill = "Exp"), color = "white") +
facet_grid(Condition ~ ., scales = "free_y", space = "free_y", switch="y") +
scale_fill_gradient2(low = "blue", mid = "gray94", high = "red", limits=c(-1, 1), breaks=seq(-1,1,by=0.5)) +
labs(title = paste(chr, " significant differentially expressed zones"))
if(length(Zone.GRanges.chr.signif) > 0){
Signif.rec.df <- data.frame(x.min = as.numeric(sapply(names(Zone.GRanges.chr.signif), function(x){which(names(Zone.GRanges.chr) == x)})) - 0.5,
x.max = as.numeric(sapply(names(Zone.GRanges.chr.signif), function(x){which(names(Zone.GRanges.chr) == x)})) + 0.5,
y.min = -Inf,
y.max = Inf)
p <- p +
geom_rect(data = Signif.rec.df, aes_string(xmin="x.min", xmax="x.max", ymin="y.min", ymax="y.max"),
color = "limegreen", fill = NA, size = 1, linetype = 1)
}
p <- p +
theme(#text = element_text(size=20),
plot.title = element_text(size = 20, hjust = 0.5),
axis.title.x=element_blank(),
axis.text.x = element_text(size = 9, angle = 90, vjust = 0.5), #size = 10,
axis.text.y = element_blank(),
# panel.grid.major.y = element_line(colour = "darkgray", size = 0.1, linetype = "dashed"),
# panel.grid.minor.y = element_line(colour = "darkgray", size = 0.1, linetype = "dashed"),
# panel.grid.major.x = element_blank(),
# panel.grid.minor.x = element_blank(),
# axis.text.x=element_blank(),
axis.ticks.y = element_blank(),
legend.title = element_blank(),
#legend.position = "top",
legend.position = "right", #c(0,1),
# legend.justification = c(0, 0),
# legend.direction = "horizontal",
# legend.margin = margin(0,0,0,0),
# legend.box.margin = margin(0,0,0,0),
# panel.background = element_rect(fill = "white", colour = "black")
strip.text.y = element_text(angle = 180)
)
plots.all[[chr]] <- p
}
pdf(plot.file, width = if(!is.null(plot.width)) plot.width else 15,
height = if(!is.null(plot.width)) plot.height else 6)
for(chr in names(plots.all)){
print(plots.all[[chr]])
}
dev.off()
}
#' @import ggplot2
#' @importFrom ggbio autoplot
#' @importFrom grDevices dev.off pdf
#' @importFrom utils setTxtProgressBar txtProgressBar
MD.Genome.plots <- function(GOZ.ds, plot.file, alpha = 0.05, min.effect.size = 0.8, plot.width = NULL, plot.height = NULL){
Zone.GRanges <- GOZ.ds$runtime.var$zone.GRanges
Zone.GRanges.sub <- NULL
if(all(is.na(Zone.GRanges$effect.size))){
Zone.GRanges.sub <- Zone.GRanges[!is.na(Zone.GRanges$p.value.adj) &
Zone.GRanges$p.value.adj <= alpha]
}else{
effect.size.threshold <- min.effect.size
#sort(Zone.GRanges$effect.size, na.last = TRUE, decreasing = TRUE)[floor(length(Zone.GRanges) * effect.size.rate)]
Zone.GRanges.sub <- Zone.GRanges[!is.na(Zone.GRanges$p.value.adj) &
Zone.GRanges$p.value.adj <= alpha &
Zone.GRanges$effect.size >= effect.size.threshold]
}
if(length(Zone.GRanges.sub) > 0){
p <- autoplot(object = Zone.GRanges.sub, layout = "karyogram", fill = "#F8766D", color = "black") +
labs(title=paste("Genome overview"), sep="") +
theme(plot.title = element_text(size = 20, hjust = 0.5),
legend.title = element_blank(),
#legend.position = "right",
text = element_text(size=20),
legend.position = c(0,1),
legend.justification = c(0, 0),
legend.direction = "horizontal",
legend.margin = margin(0,0,0,0),
legend.box.margin = margin(0,0,0,0))
pdf(plot.file,
width = if(!is.null(plot.width)) plot.width else 15,
height = if(!is.null(plot.width)) plot.height else 10)
print(p)
dev.off()
}else{
message("No significant differential expressed zones!")
}
return(NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.