Nothing
#################
## Setup class ##
#################
#' @include helper.R
#' @include GenoGAMFamily-class.R
NULL
#' GenoGAMSEtup class
#'
#' A class to embody the setup for a GenoGAM fit
#'
#' @slot params A list of all hyper-parameters which are either estimated
#' or fixed. At the moment the smoothing parameter lambda, the overdispersion
#' parameter theta the order and penalization order of the splines as well as
#' the second regularization parameter epsilon are provided.
#' @slot knots A list of knot positions on each chromosome.
#' @slot designMatrix The design matrix.
#' @slot beta The vector of coefficients to be estimated. Initialized.
#' @slot vcov The covariance matrix
#' @slot penaltyMatrix The penalty matrix S with penalization order r.
#' By default r = 2.
#' @slot formula The formula of the model. Usually the same as the design of
#' the GenoGAMDataSet
#' @slot design The actual design used to model the data, obtained
#' from merging the formula into the colData
#' @slot offset An offset of the samples
#' @slot family The distribution to be used. At the moment only "nb"
#' (Negative Binomial) is available.
#' @slot response The response vector
#' @slot fits The vector of fits
#' @slot control A list of parameters to control the parameter estimation
#' @author Georg Stricker \email{georg.stricker@@in.tum.de}
#' @noRd
setClass("GenoGAMSetup",
slots = list(params = "list", knots = "list",
designMatrix = "dgCMatrix", beta = "matrix",
se = "list", penaltyMatrix = "dgCMatrix",
formula = "formula", design = "matrix",
offset = "numeric", family = "GenoGAMFamily",
response = "numeric", fits = "list",
control = "list"),
prototype = list(params = list(lambda = 0, theta = 0, eps = 0,
order = 2, penorder = 2),
knots = list(), designMatrix = new("dgCMatrix"),
beta = matrix(,0,0), se = list(),
penaltyMatrix = new("dgCMatrix"), formula = ~1,
design = matrix(,0,0),
offset = numeric(), family = GenoGAMFamily(),
response = integer(), fits = list(),
control = list(eps = 1e-6, maxiter = 1000, alpha = 1,
rho = 0.5, c = 1e-4, m = 6)))
## Validity
## ========
## Validating the correct type
.validateParamsType <- function(object) {
if(!is(slot(object, "params"), "list")) {
return("'params' must be a list object")
}
NULL
}
.validateParamsElements <- function(object) {
if(!all(names(slot(object, "params")) %in% c("lambda", "theta", "eps", "order", "penorder"))) {
return("'params' must contain the elements 'lambda', 'theta', 'eps', 'order' and 'penorder'")
}
NULL
}
.validateGGSKnotsType <- function(object) {
if(!is(slot(object, "knots"), "list")) {
return("'knots' must be a list object")
}
NULL
}
.validateDesignMatrixType <- function(object) {
if(!is(slot(object, "designMatrix"), "dgCMatrix")) {
return("'designMatrix' must be a dgCMatrix object")
}
NULL
}
.validateBetaType <- function(object) {
if(!is(slot(object, "beta"), "matrix")) {
return("'beta' must be a matrix object")
}
NULL
}
.validateSEType <- function(object) {
if(!is(slot(object, "se"), "list")) {
return("'se' must be a list object")
}
NULL
}
.validatePenaltyMatrixType <- function(object) {
if(!is(slot(object, "penaltyMatrix"), "dgCMatrix")) {
return("'penaltyMatrix' must be a dgCMatrix object")
}
NULL
}
.validateFormulaType <- function(object) {
if(!is(slot(object, "formula"), "formula")) {
return("'formula' must be a formula object")
}
NULL
}
.validateGGSDesignType <- function(object) {
if(!is(slot(object, "design"), "matrix")) {
return("'design' must be a matrix object")
}
NULL
}
.validateOffsetType <- function(object) {
if(mode(slot(object, "offset")) != "numeric") {
return("'offset' must be a numeric object")
}
NULL
}
.validateFamilyType <- function(object) {
if(!is(slot(object, "family"), "GenoGAMFamily")) {
return("'family' must be a GenoGAMFamily object")
}
NULL
}
.validateResponseType <- function(object) {
if(mode(slot(object, "response")) != "numeric") {
return("'response' must be either a numeric or an Rle object")
}
NULL
}
.validateFitsType <- function(object) {
if(mode(slot(object, "fits")) != "list") {
return("'fits' must be a list object")
}
NULL
}
.validateControlType <- function(object) {
if(!all(names(slot(object, "control")) %in% c("eps", "maxiter", "alpha", "rho", "c", "m"))) {
return("'control' must contain the elements 'eps', 'maxiter', 'alpha', 'rho', 'c', 'm'")
}
NULL
}
## general validate function
.validateGenoGAMSetup <- function(object) {
c(.validateParamsType(object), .validateGGSKnotsType(object),
.validateDesignMatrixType(object), .validateBetaType(object),
.validateSEType(object), .validatePenaltyMatrixType(object),
.validateFormulaType(object), .validateGGSDesignType(object),
.validateOffsetType(object), .validateFamilyType(object),
.validateResponseType(object), .validateFitsType(object),
.validateParamsElements(object), .validateControlType(object))
}
S4Vectors::setValidity2("GenoGAMSetup", .validateGenoGAMSetup)
## Constructor
GenoGAMSetup <- function(...) {
ggs <- new("GenoGAMSetup", ...)
params <- slot(ggs, "params")
coreValues <- c(lambda = 0, theta = 0, eps = 0, order = 2,
penorder = 2)
params <- .fillParameters(l = params, coreValues)
slot(ggs, "params") <- params
## check if all estimation algo params are there
params <- slot(ggs, "control")
estimControl = list(eps = 1e-6, maxiter = 1000, alpha = 1, rho = 0.5,
c = 1e-4, m = 6)
params <- .fillParameters(l = params, estimControl)
slot(ggs, "control") <- params
return(ggs)
}
## the dimension function
## @param x A GenoGAMSetup object
## @return The four dimensions of the object (designMatrix rows, designMatrix
## columns, experiment design rows, experiment design columns)
## @noRd
setMethod("dim", "GenoGAMSetup", function(x) {
Xdim <- dim(slot(x, "designMatrix"))
designDim <- dim(slot(x, "design"))
blockDim <- c(Xdim[1]/max(1, designDim[1]), Xdim[2]/max(1, designDim[2]))
return(c(blockDim, designDim))
})
## the length function
## @param x A GenoGAMSetup object
## @return The length of the object as the product of all dimensions
## @noRd
setMethod("length", "GenoGAMSetup", function(x) {
return(prod(dim(x)))
})
## Get number of functions from GenoGAMSetup
.nfun <- function(ggs) {
vars <- .getVars(slot(ggs, "formula"), type = "covar")
return(length(vars))
}
## Get number of betas from GenoGAMSetup
.nbeta <- function(ggs) {
betas <- slot(ggs, "beta")
if(ncol(betas) > 1) {
res <- nrow(betas)
}
else {
funs <- .nfun(ggs)
res <- nrow(betas)/funs
}
return(res)
}
## Constructor function
setupGenoGAM <- function(ggd, lambda = NULL, theta = NULL, eps = 0, family = "nb",
bpknots = 20, order = 2, penorder = 2, control = list()) {
## knot placement
positions <- ranges(getIndex(ggd))[1]
x <- start(positions):end(positions)
nknots <- round(length(x)/bpknots)
knots <- .placeKnots(x = x, nknots = nknots)
X <- .buildDesignMatrix(knots = knots, pos = x, order = order)
des <- .getDesignFromFormula(design(ggd), colData(ggd))
## Number of betas = number of knots
## Number of functions = Count the functions in the formula
nbetas <- nknots
nfun <- length(.getVars(design(ggd), type = "covar"))
S <- .buildSMatrix(nbetas, penorder)
I <- .buildIMatrix(nbetas, eps)
S <- S + I
## turn knots into list to comply with object requirements
knots <- list(knots)
names(knots) <- "1"
offset <- rep(sizeFactors(ggd), each = getTileSize(ggd))
if(family == "nb") {
fam <- GenoGAMFamily(ll = ll_pen_nb,
gradient = gr_ll_pen_nb,
hessian = 1L,
name = "nb")
}
else {
fam <- GenoGAMFamily()
}
ggsetup <- GenoGAMSetup(params = list(lambda = lambda, theta = theta, eps = eps,
order = order, penorder = penorder),
knots = knots, formula = design(ggd),
design = des, offset = offset, family = fam,
designMatrix = X, penaltyMatrix = S, control = control)
return(ggsetup)
}
## A function to generate knots for P-Splines from a GenoGAMDataSet object
.generateKnotPositions <- function(ggd, bpknots = 20){
positions <- IRanges::ranges(getIndex(ggd))[1]
x <- IRanges::start(positions):IRanges::end(positions)
nknots <- round(length(x)/bpknots)
knots <- .placeKnots(x = x, nknots = nknots)
res <- list(knots)
names(res) <- "1"
return(res)
}
## A function to place knots for P-Splines
## Courtesy to Simon Wood (mgcv). Slightly changed.
.placeKnots <- function(x, nknots, ord = 2) {
m <- ord + 1
nk <- nknots - ord
xu <- max(x)
xl <- min(x)
xr <- xu - xl
multFactor <- min(1/(10^floor(log10(xr))), 0.001)
xl <- xl - xr * multFactor
xu <- xu + xr * multFactor
dx <- (xu - xl)/(nk - 1)
k <- seq(xl - dx * m, xu + dx * m, length.out = nk + 2 * ord + 2)
return(k)
}
## A function to build the penalization matrix S
## Courtesy to Simon Wood (mgcv). Slightly changed
.buildSMatrix <- function(p, order) {
##initialize a diagonal identity matrix
S <- Matrix::bandSparse(p, k = 0, diag = c(list(rep(1, p))))
## S <- Matrix::Matrix(diag(p), sparse = TRUE)
for (i in 1:order) {
S <- Matrix::diff(S) ## twice the difference
}
S <- Matrix::t(S)%*%S ## square
return(S)
}
## A function to build the identity matrix I with multiple epsilon
## Courtesy to Simon Wood (mgcv)
.buildIMatrix <- function(p, epsilon) {
##initialize a diagonal identity matrix
I <- Matrix::bandSparse(p, k = 0, diag = c(list(rep(1, p))))
return(epsilon*I)
}
## B spline basis
.bspline <- function(x, k, ord = 2, derivative = 0) {
res <- splines::spline.des(k, x, ord + 2, rep(derivative,length(x)), sparse=TRUE)$design
return(res)
}
## build a block matrix from a template submatrix and a design matrix
.blockMatrixFromDesignMatrix <- function(template, design) {
## ## create 4-dim array by 'inserting' the template into the desing matrix
## arr <- array(template, c(dim(template),dim(design)))
## dims <- dim(arr)
## multP <- c(3,4,1,2)
## reduceP <- c(3,1,4,2)
## ## permute array for correct multiplication
## multArr <- aperm(arr, multP)*as.vector(design)
## ## permute array for correct reduction
## reducedArr <- aperm(multArr, reduceP)
## ## reduce 4-dim array to 2-dim matrix
## dim(reducedArr) <- c(nrow(template)*nrow(design), ncol(template)*ncol(design))
## return(reducedArr)
## use kronecker product for matrices instead of own function
## very memory efficient
res <- design %x% template
return(res)
}
## Build design matrix from the data
.buildDesignMatrix <- function(knots, pos, order) {
## build matrix
X <- as(.bspline(pos, knots, order),"dgCMatrix")
## design <- .getDesignFromFormula(design(ggd), colData(ggd))
## X <- as(.blockMatrixFromDesignMatrix(x, design), "dgCMatrix")
return(X)
}
## get the design from formula
.getDesignFromFormula <- function(formula, design) {
formulaCols <- .getVars(formula)
designCols <- as.vector(stats::na.omit(formulaCols))
newDesign <- as.matrix(design[,designCols])
colnames(newDesign) <- designCols
if("s(x)" %in% names(formulaCols)) {
control <- rep(1, nrow(newDesign))
newDesign <- cbind(control, newDesign)
}
return(newDesign)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.