Nothing
#############################
## GenoGAMList class
############################
#' @include GenoGAMSettings-class.R
#' @include GenoGAM-class.R
NULL
#' GenoGAMList class
#'
#' This is the class the holds the complete model as well all hyperparameters
#' and settings that were used to fit it. It is basically identical to the
#' GenoGAM class, except for the data being inside a list of RangedSummarizedExperiment
#' objects.
#'
#' @slot family The name of the distribution family used
#' @slot design The formula of the model
#' @slot sizeFactors The offset used in the model.
#' @slot factorialDesign The factorial design used. The same as colData in the
#' GenoGAMDataSet
#' @slot params All hyperparameters used to fit the data. The parameters
#' estimated by cross validation can also be found here. But the parameters
#' used in cross validation are in the settings slot.
#' @slot settings A GenoGAMSettings object representing the global
#' settings that were used to compute the model.
#' @slot data A list of RangedSummarizedExperiment that holds the actual data
#' @slot id A GRanges object keeping the identifiers assigning the regions to the
#' respective list elements
#' @slot coefs The coefficients of the knots
#' @slot knots The relative knot positions
#' @name GenoGAMList-class
#' @rdname GenoGAMList-class
#' @author Georg Stricker \email{georg.stricker@@in.tum.de}
setClass("GenoGAMList",
slots = list(family = "GenoGAMFamily",
design = "formula",
sizeFactors = "numeric",
factorialDesign = "DataFrame",
params = "list",
settings = "GenoGAMSettings",
data = "list", id = "GRanges",
coefs = "HDF5OrMatrix",
knots = "numeric",
hdf5 = "logical"),
prototype = prototype(family = GenoGAMFamily(),
design = ~ s(x),
sizeFactors = numeric(),
factorialDesign = S4Vectors::DataFrame(),
params = list(),
settings = GenoGAMSettings(),
data = list(), id = GenomicRanges::GRanges(),
coefs = matrix(), knots = numeric(),
hdf5 = FALSE))
## Validity
## ========
## general validate function
.validateGenoGAMList <- function(object) {
c(.validateFamilyType(object), ## all from GenoGAM-class.R
.validateDesignType(object),
.validateSFType(object),
.validateFactorialDesign(object),
.validateParamsType(object),
.validateSettingsType(object),
.validateCoefsType(object),
.validateGGKnotsType(object),
.validateDataType(object), ## from GenoGAMDataSetList-class.R
.validateIDType(object), ## from GenoGAMDataSetList-class.R
.validateH5Type(object)) ## from GenoGAMDataSet-class.R
}
S4Vectors::setValidity2("GenoGAMList", .validateGenoGAMList)
## Constructor
## ========
#' GenoGAMList constructor
#'
#' The GenoGAMList constructor, not designed to be actually used, by the user.
#' Rather to be a point of reference and documentation for slots and how
#' to access them.
#'
#' @param object,x For use of S4 methods. The GenoGAMList object.
#' @param withDimnames For use of S4 methods. The GenoGAMList object.
#' @param i A GRanges object (only for subsetting)
#' @param ... Slots of the GenoGAM class. See the slot description.
#' @param ggd The initial GenoGAMDataSet object. Only needed if fromHDF5 is TRUE.
#' @param fromHDF5 A convenience argument to create a GenoGAM object from the already
#' computed fits that are stored as HDF5 files
#' @return An object of the type GenoGAM.
#' @examples
#'
#' ## creating test GenoGAM object
#' gg <- makeTestGenoGAM()
#' gg
#'
#' ## using accessors
#' design(gg)
#' sizeFactors(gg)
#' getSettings(gg)
#' getFamily(gg)
#' colData(gg)
#' getParams(gg)
#' getCoefs(gg)
#' getKnots(gg)
#' rowRanges(gg)
#' assay(gg)
#' assays(gg)
#' fits(gg)
#' se(gg)
#' @name GenoGAMList
#' @rdname GenoGAMList-class
GenoGAMList <- function(..., ggd = NULL, fromHDF5 = FALSE) {
if(fromHDF5) {
return(.GenoGAMListFromHDF5(ggd = ggd, ...))
}
return(new("GenoGAMList", ...))
}
## A function to create GenoGAMList from HDF5
.GenoGAMListFromHDF5 <- function(ggd, ...) {
settings <- slot(ggd, "settings")
## get Identifier for the data
path <- slot(settings, "hdf5Control")$dir
ident <- .getIdentifier(path, fits = TRUE)
## finally build object
rr <- rowRanges(ggd)
splitid <- dataRange(ggd)
splitid$id <- as.character(GenomeInfoDb::seqnames(splitid))
selist <- lapply(splitid$id, function(id) {
## read HDF5 file
h5file <- file.path(path, paste0("fits_", id, "_", ident))
## read HDF5 data and make SummarizedExperiment objects
h5fits <- HDF5Array::HDF5Array(h5file, "fits")
h5ses <- HDF5Array::HDF5Array(h5file, "ses")
se <- SummarizedExperiment::SummarizedExperiment(rowRanges = rr[[id]],
assays = list(fits = h5fits,
se = h5ses))
return(se)
})
names(selist) <- splitid$id
## generate knots and get coefficients
bpknots <- slot(settings, "dataControl")$bpknots
knots <- .generateKnotPositions(ggd, bpknots = 20)
h5coefs <- file.path(path, paste0("coefs_", ident))
coefs <- HDF5Array::HDF5Array(h5coefs, "coefs")
args <- list(...)
if("params" %in% names(args)) {
params <- c(args$params, chromosomes = granges(splitid))
args$params <- NULL
}
else {
params <- list(chromosomes = granges(splitid))
}
ggl <- do.call(new, c(list("GenoGAMList", design = design(ggd),
sizeFactors = sizeFactors(ggd), factorialDesign = colData(ggd),
settings = settings, data = selist, id = splitid,
knots = knots[[1]], coefs = coefs, params = params,
hdf5 = TRUE), args))
return(ggl)
}
## Accessors
## =========
#' @describeIn GenoGAMList Get the dimension of the object
setMethod("dim", "GenoGAMList", function(x) {
dims <- sapply(x@data, dim)
if(length(dims) == 0) {
return(c(0, 0))
}
res <- c(sum(as.numeric(dims[1,])), max(dims[2,]))
return(res)
})
#' @describeIn GenoGAMList The length of the object
setMethod("length", "GenoGAMList", function(x) {
dim(x)[1]
})
#' @describeIn GenoGAMList The seqlengths of the object
setMethod("seqlengths", "GenoGAMList", function(x) {
if(length(rowRanges(x)) > 0) {
return(GenomeInfoDb::seqlengths(rowRanges(x)[[1]]))
}
integer()
})
#' @describeIn GenoGAMList The seqlevels of the object
setMethod("seqlevels", "GenoGAMList", function(x) {
if(length(rowRanges(x)) > 0) {
return(GenomeInfoDb::seqlevels(rowRanges(x)[[1]]))
}
character()
})
#' @describeIn GenoGAMList The seqlevelsInUse of the object
setMethod("seqlevelsInUse", "GenoGAMList", function(x) {
if(length(rowRanges(x)) > 0) {
return(names(rowRanges(x)))
}
character()
})
#' @describeIn GenoGAMList An accessor to the design slot
setMethod("design", "GenoGAMList", function(object) {
slot(object, "design")
})
#' @describeIn GenoGAMList An accessor to the sizeFactors slot
setMethod("sizeFactors", "GenoGAMList", function(object) {
slot(object, "sizeFactors")
})
#' @describeIn GenoGAMList An accessor to the settings slot
setMethod("getSettings", "GenoGAMList", function(object) {
slot(object, "settings")
})
#' @describeIn GenoGAMList An accessor to the family slot
setMethod("getFamily", "GenoGAMList", function(object) {
slot(object, "family")
})
#' @describeIn GenoGAMList An accessor to the factorialDesign slot.
setMethod("colData", "GenoGAMList", function(x) {
slot(x, "factorialDesign")
})
#' @describeIn GenoGAMList An accessor to the params slot
setMethod("getParams", "GenoGAMList", function(object) {
slot(object, "params")
})
#' @describeIn GenoGAMList An accessor to the coefs slot
setMethod("getCoefs", "GenoGAMList", function(object) {
slot(object, "coefs")
})
#' @describeIn GenoGAMList An accessor to the knots slot
setMethod("getKnots", "GenoGAMList", function(object) {
slot(object, "knots")
})
#' @describeIn GenoGAMList The accessor to the fits and standard errors
setMethod("assay", c("GenoGAMList", "missing"), function(x, i) {
lapply(x@data, assay)
})
#' @describeIn GenoGAMList get a list of list of assays from the
#' GenoGAMList object. Just for completeness, shouldn't be needed.
setMethod("assays", "GenoGAMList", function(x, ...) {
lapply(x@data, assays)
})
#' @describeIn GenoGAMList get a list of rowRanges from the
#' GenoGAMList object
setMethod("rowRanges", "GenoGAMList", function(x, ...) {
lapply(x@data, rowRanges)
})
#' @describeIn GenoGAMList An accessor to the fits
setMethod("fits", "GenoGAMList", function(object) {
lapply(assays(object), function(y) y[["fits"]])
})
#' @describeIn GenoGAMList An accessor to the standard errors
setMethod("se", "GenoGAMList", function(object) {
lapply(assays(object), function(y) y[["se"]])
})
#' @describeIn GenoGAMList An accessor to the pvalues
setMethod("pvalue", "GenoGAMList", function(object) {
lapply(assays(object), function(y) y[["pvalue"]])
})
#' @describeIn GenoGAMList column names of GenoGAMList
setMethod("colnames", "GenoGAMList", function(x) {
if(length(x@data) == 0) {
return(NULL)
}
rownames(slot(x@data[[1]], "colData"))
})
#' @describeIn GenoGAMList The names of the dimensions of GenoGAMList
setMethod("dimnames", "GenoGAMList", function(x) {
list(names(x@data[[1]]), colnames(x))
})
#' @describeIn GenoGAMList A boolean function that is true if object uses HDF5 backend
setMethod("is.HDF5", signature(object = "GenoGAMList"), function(object) {
res <- slot(object, "hdf5")
return(res)
})
## Test GenoGAM
## =============
#' Make an example /code{GenoGAMList}
#'
#' @return A /code{GenoGAMList} object
#' @examples
#' ggl <- makeTestGenoGAMList()
#' @export
makeTestGenoGAMList <- function() {
k <- 10000
ip <- sin(seq(-7, 5, length.out = k)) + 1
reduce <- 100^(seq(1, 0.01, length.out = k))
reduce <- reduce/max(reduce)
background <- (sin(seq(-7, 5, length.out = k)) + 1) * reduce
chroms <- c("chrX", "chrY", "chrZ")
gr <- GenomicRanges::GPos(GenomicRanges::GRanges(chroms,
IRanges::IRanges(c(1,1,1), c(k, k, k))))
GenomeInfoDb::seqlengths(gr) <- c(1e6, 2e6, 1.5e6)
selist <- lapply(chroms, function(chr) {
add <- sample(0:3, 2)
ip <- ip + add[1]
background <- background + add[2]
sdx <- runif(k)
sdexperiment <- runif(k)
sdf <- S4Vectors::DataFrame(input = background, IP = ip)
sedf <- S4Vectors::DataFrame(sdx = sdx, sde = sdexperiment)
names(sdf) <- names(sedf) <- c("s(x)", "s(x):experiment")
se <- SummarizedExperiment::SummarizedExperiment(rowRanges = gr[GenomeInfoDb::seqnames(gr) == chr,],
assays = list(fits = sdf, se = sedf))
})
names(selist) <- chroms
id <- .extractGR(gr)
id$id <- as.character(S4Vectors::runValue(GenomeInfoDb::seqnames(gr)))
family <- GenoGAMFamily()
design <- ~ s(x) + s(x, by = experiment)
sizeFactors <- c(input = 0, IP = 0)
params <- list(cv = FALSE)
coldf <- S4Vectors::DataFrame(experiment = c(0, 1))
rownames(coldf) <- c("input", "IP")
ggl <- GenoGAMList(family = family, design = design,
sizeFactors = sizeFactors, params = params,
data = selist, id = id, factorialDesign = coldf)
return(ggl)
}
## Subsetting
## ==========
#' Subset method for GenoGAMList
#'
#' @details
#' Those are various methods to subset the GenoGAMList object.
#' By logical statement or GRanges overlap. The '[' subsetter is
#' just a short version of 'subsetByOverlaps'.
#'
#' @param x A GenoGAMList object.
#' @param ranges,i A GRanges object. In case of subsetting by double brackets
#' 'i' is the index of the tile.
#' @param maxgap,minoverlap Intervals with a separation of 'maxgap' or
#' less and a minimum of 'minoverlap' overlapping positions, allowing for
#' 'maxgap', are considered to be overlapping. 'maxgap' should
#' be a scalar, non-negative, integer. 'minoverlap' should be a scalar,
#' positive integer.
#' @param type By default, any overlap is accepted. By specifying the 'type'
#' parameter, one can select for specific types of overlap. The types correspond
#' to operations in Allen's Interval Algebra (see references in). If \code{type}
#' is \code{start} or \code{end}, the intervals are required to have matching
#' starts or ends, respectively. While this operation seems trivial, the naive
#' implementation using \code{outer} would be much less efficient. Specifying
#' \code{equal} as the type returns the intersection of the \code{start} and
#' \code{end} matches. If \code{type} is \code{within}, the query interval must
#' be wholly contained within the subject interval. Note that all matches must
#' additionally satisfy the \code{minoverlap} constraint described above.
#'
#' The \code{maxgap} parameter has special meaning with the special
#' overlap types. For \code{start}, \code{end}, and \code{equal}, it specifies
#' the maximum difference in the starts, ends or both, respectively. For
#' \code{within}, it is the maximum amount by which the query may be wider
#' than the subject.
#' @param invert If TRUE, keep only the query ranges that do _not_ overlap
#' the subject.
#' @param ... Further arguments. Mostly a logical statement
#' in case of the 'subset' function. Note that the columnnames
#' for chromosomes and positions are: 'seqnames' and 'pos'.
#' @references
#' Allen's Interval Algebra: James F. Allen: Maintaining knowledge
#' about temporal intervals. In: Communications of the ACM.
#' 26/11/1983. ACM Press. S. 832-843, ISSN 0001-0782
#' @return A subsetted GenoGAMList object.
#' @author Georg Stricker \email{georg.stricker@@in.tum.de}
#' @rdname GenoGAMList-subsetting
setMethod("subset", "GenoGAMList", function(x, ...) {
if(all(dim(x) == c(0, 0))) return(x)
fam <- getFamily(x)
settings <- getSettings(x)
design <- design(x)
sf <- sizeFactors(x)
cd <- colData(x)
params <- getParams(x)
coefs <- getCoefs(x)
knots <- getKnots(x)
hdf5 <- is.HDF5(x)
## make data slot
## subset all SummarizedExperiments
se <- lapply(x@data, function(se) {
res <- subset(se, ...)
return(res)
})
## reduce the list to non-empty. However in order to mimic what happens
## if the complete subset is zero, we have to keep the result, as we might
## need it later. Otherwise it will be an empty list, which is not how
## SummarizedExperiment and GenoGAMDataSet deals with it. On the other hand
## we don't want to carry a bunch of empty SEs around if they are not needed anyway.
reduced_se <- se[as.logical(vapply(se, length, integer(1)))]
if(length(reduced_se) == 0) {
reduced_se <- se[1]
index <- GenomicRanges::GRanges()
}
else {
reduced_se <- lapply(reduced_se, function(y) {
## set correct seqinfo
GenomeInfoDb::seqlevels(rowRanges(y), pruning.mode="coarse") <- names(reduced_se)
return(y)
})
slot(settings, "chromosomeList") <- GenomeInfoDb::seqlevels(reduced_se[[1]])
}
## make id slot
splitid <- .rowRangesFromList(reduced_se)
splitid$id <- as.character(S4Vectors::runValue(GenomeInfoDb::seqnames(splitid)))
ggl <- new("GenoGAMList", settings = settings,
design = design, sizeFactors = sf,
family = fam, factorialDesign = cd,
params = params, coefs = coefs,
knots = knots, hdf5 = hdf5,
data = reduced_se, id = splitid)
return(ggl)
})
## underlying function to subset by overlaps
.subsetByOverlapsGGL <- function(query, subject, maxgap = -1L, minoverlap = 0L,
type = c("any", "start", "end", "within", "equal"),
invert = FALSE, ...) {
## need to make even widths, otherwise subsetByOverlaps does it with a warning
if(any((width(subject) %% 2) == 1)) {
futile.logger::flog.debug("Some subset ranges have odd widths. Rounding to the next even number.")
idx <- which((width(subject) %% 2) == 1)
width(subject)[idx] <- width(subject)[idx] + 1
}
fam <- getFamily(query)
settings <- getSettings(query)
design <- design(query)
sf <- sizeFactors(query)
cd <- colData(query)
params <- getParams(query)
coefs <- getCoefs(query)
knots <- getKnots(query)
hdf5 <- is.HDF5(query)
## iterate over all SummarizedExperiments and subset
se <- lapply(query@data, function(se) {
res <- subsetByOverlaps(se, subject, maxgap = maxgap,
minoverlap = minoverlap,
type=type, invert = invert, ...)
return(res)
})
## reduce the list to non-empty. However in order to mimic what happens
## if the complete subset is zero, we have to keep the result, as we might
## need it later. Otherwise it will be an empty list, which is not how
## SummarizedExperiment and GenoGAMDataSet deals with it. On the other hand
## we don't want to carry a bunch of empty SEs around if they are not needed anyway.
reduced_se <- se[as.logical(vapply(se, length, integer(1)))]
if(length(reduced_se) == 0) {
reduced_se <- se[1]
index <- GenomicRanges::GRanges()
}
else {
reduced_se <- lapply(reduced_se, function(y) {
## set correct seqinfo
GenomeInfoDb::seqlevels(rowRanges(y), pruning.mode="coarse") <- names(reduced_se)
return(y)
})
slot(settings, "chromosomeList") <- GenomeInfoDb::seqlevels(reduced_se[[1]])
}
## make id slot
splitid <- .rowRangesFromList(reduced_se)
splitid$id <- as.character(GenomeInfoDb::seqnames(splitid))
ggl <- new("GenoGAMList", settings = settings,
design = design, sizeFactors = sf,
family = fam, factorialDesign = cd,
params = params, coefs = coefs,
knots = knots, hdf5 = hdf5,
data = reduced_se, id = splitid)
return(ggl)
}
#' @rdname GenoGAMList-subsetting
setMethod("subsetByOverlaps", signature(x = "GenoGAMList", ranges = "GRanges"),
function(x, ranges, maxgap = -1L, minoverlap = 0L,
type = c("any", "start", "end", "within", "equal"),
invert = FALSE, ...) {
type <- match.arg(type)
if(type == "any") {
maxgap <- -1L
minoverlap <- 0L
}
res <- .subsetByOverlapsGGL(query = x, subject = ranges,
maxgap = maxgap, minoverlap = minoverlap,
type = type, invert = invert)
return(res)
})
##' @rdname GenoGAMList-subsetting
setMethod("[", c("GenoGAMList", "GRanges"), function(x, i) {
ggl <- subsetByOverlaps(x, i)
return(ggl)
})
## Cosmetics
## ==========
## returns NA if object is NULL and the object otherwise
.check <- function(x) {
if(is.null(x)) {
res <- NA
}
else {
res <- x
}
return(res)
}
## The actual show function
.showGenoGAM <- function(gg) {
params <- slot(gg, "params")
if(is.null(params$cv)) {
params$cv <- FALSE
}
form <- design(gg)
cl <- class(gg)
dims <- dim(gg)
md <- unique(names(colData(gg)))
tracks <- colnames(gg)
samples <- rownames(colData(gg))
sf <- sizeFactors(gg)
fam <- getFamily(gg)
cat("Family: ", fam@name, "\n")
cat("Formula: ", paste(as.character(form), collapse = " "), "\n")
tsize <- params$tileSize
tname <- "Tiles"
unit <- ""
if(!is.null(tsize)) {
unit = "bp"
if(tsize/1000 > 1) {
unit <- "kbp"
tsize <- tsize/1000
}
if(tsize/1e6 > 1) {
unit <- "Mbp"
tsize <- tsize/1e6
}
}
chroms <- getSettings(gg)@chromosomeList
tnum <- params$numTiles
cat("Class:", cl, "\n")
cat("Dimension:", dims, "\n")
cat(paste0("Samples(", length(samples), "):"), samples, "\n")
cat(paste0("Design variables(", length(md), "):"), md, "\n")
cat(paste0("Smooth functions(", length(tracks), "):"), tracks, "\n")
cat("Chromosomes:", chroms, "\n")
cat("\n")
cat("Size factors:\n")
show(sizeFactors(gg))
if(params$cv) {
performed <- "Performed"
}
else {
performed <- "Not performed"
}
cat("\n")
cat("Cross Validation: ", performed, "\n")
if(params$cv) {
cat(" Number of folds: ", .check(params$kfolds), "\n")
cat(" Interval size: ", .check(params$intervalSize), "\n")
cat(" Number of regions: ", .check(params$regions), "\n")
}
cat("\n")
cat("Spline Parameters:\n")
cat(" Knot spacing: ", .check(params$bpknots), "\n")
cat(" B-spline order: ", .check(params$order), "\n")
cat(" Penalization order: ", .check(params$penorder), "\n")
cat("\n")
cat("Tile settings:\n")
cat(" Chunk size:", .check(params$chunkSize), "\n")
cat(" Tile size:", .check(params$tileSize), "\n")
cat(" Overhang size:", .check(params$overhangSize), "\n")
cat(" Number of tiles:", .check(params$numTiles), "\n")
cat(" Evaluated genome ranges:\n")
show(.check(params$chromosomes))
}
setMethod("show", "GenoGAMList", function(object) {
.showGenoGAM(object)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.