Nothing
# find inter class correlation between factor and continuous covariates
# inspired from http://stats.stackexchange.com/questions/108007/correlations-with-categorical-variables
.getfactorcontassociationstatistics <- function(factorcontnames,
covariates,
na.action='remove',
alpha = 0.05){
if (na.action == "remove")
covariates = na.omit(covariates[, factorcontnames])
covariates[,2] <- as.numeric(covariates[,2])
data <- list(x = covariates[, 1L],
y = covariates[, 2L])
stats <- cor.test(scale(data[[1L]]),
scale(data[[2L]]),
method = "kendall", exact = FALSE)
cor <- stats[["estimate"]]
pval <- stats[["p.value"]]
return(c(estimate = cor, pval = pval))
}
# function to run principal component analysis
.runpca <- function(genesbysamples, scale_data_for_pca = TRUE,
min_pve_pct_pc = 1.0) {
# estimate variance in data by pc:
pca.res <- prcomp(t(genesbysamples), center = TRUE,
scale. = scale_data_for_pca, retx = TRUE)
# examine how much variance is explained by pcs,
# and consider those with pve >= (min_pve_pct_pc %):
pc.var <- pca.res$sdev^2L
pve <- 100L * (pc.var / sum(pc.var))
npca <- max(1L, length(which(pve >= min_pve_pct_pc)))
samplepcvals <- pca.res$x[, 1L:npca, drop = FALSE]
list(samplepcvals = samplepcvals, pve = pve)
}
# function to calculate correlation and plot
# cat vs continous
# ICCest(Chick, weight, data = ChickWeight, CI.type = "S")
# broom::tidy(aov(weight~Chick, data = ChickWeight))
# data("Arthritis") # cat vs cat
# tab <- xtabs(~Improved + Treatment, data = Arthritis)
# summary(assocstats(tab))
#
# assocstats(UCBAdmissions)
.calccompletecorandplot <- function(compare_data, covar_data,
correlationtype, title,
weights = NULL,
exclude_vars_from_fdr=NULL,
max_fdr = 0.1) {
# get factor and continuous covariates
character_vars <- lapply(covar_data, class) == "character"
if (sum(character_vars) > 0 )
covar_data[, character_vars] <- apply(covar_data[, character_vars,
drop = FALSE],
1L, as.factor)
factorcovariates <- select_if(covar_data, is.factor) %>% colnames
contcovariates <- select_if(covar_data, is.numeric) %>% colnames
all_covariates <- cbind(covar_data[, contcovariates, drop = FALSE],
covar_data[, factorcovariates, drop = FALSE] %>%
mutate_all(as.numeric))
cov_cor <- corr.test(compare_data,
all_covariates,
use = 'pairwise.complete.obs',
method = correlationtype,
adjust = "none")
all_cor_vals <- cov_cor[["r"]]
all_cor_p <- cov_cor[["p"]]
rownames(all_cor_vals) <- colnames(compare_data)
colnames(all_cor_vals) <- colnames(all_covariates)
rownames(all_cor_p) <- colnames(compare_data)
colnames(all_cor_p) <- colnames(all_covariates)
effects.significantcovars <- all_cor_vals
effects.significantcovars[all_cor_p > max_fdr] <- 0
effects.significantcovars <- colSums(abs(effects.significantcovars) * replicate(dim(effects.significantcovars)[2L], weights / sum(weights)))
effects.significantcovars <- effects.significantcovars[order(abs(effects.significantcovars), decreasing = TRUE)]
cor_mat <- melt(all_cor_p, varnames = c("compare", "covar"))
colnames(cor_mat)[colnames(cor_mat) == "value"] <- "pvalue"
cor_mat[["compare"]] <- factor(cor_mat[["compare"]],
levels = rownames(all_cor_p))
cor_mat[["covar"]] <- factor(cor_mat[["covar"]],
levels = colnames(all_cor_p))
cor_mat[["r"]] <- melt(all_cor_vals)[["value"]]
cor_mat[["fdr"]] <- p.adjust(cor_mat[["pvalue"]], method = "fdr")
return(list(mat = cor_mat,
effects.significantcovars = effects.significantcovars))
}
.generate_scatter_plot <- function(metadata, corMat){
if (sum(corMat[["fdr"]] < 0.1, na.rm = T) == 0) return(NULL)
plist <- apply(corMat[corMat[["fdr"]] < 0.1, ], 1, function(row){
xs <- strsplit(row[1], " ")[[1]][1]
ys <- row[2]
ggplot(metadata, aes_string(x = xs, y = ys)) +
geom_point() +
ggtitle(paste(xs, ys))
})
names <- corMat[corMat[["fdr"]] < 0.1, ] %>%
mutate(name = paste(compare, covar, sep = ":")) %>%
.[["name"]]
names(plist) <- names
plist
}
.numeric_effect_size <- function(covar_numeric, smart = TRUE){
.smart <- function(v) {
if (min(v) >= 0 & max(v)<=1)
return(max(v)-min(v))
if (min(v) >= 0 & max(v)<=100)
return(max(v)-min(v))
1 - min(v/max(v))
}
apply(covar_numeric,
2, function(v){
if (smart)
return(.smart(v))
max(v)-min(v)
}
)
}
.effect_size <- function(ma, covar_numeric, covar_factors,
smart = TRUE){
ma_sd <- data.frame(covar = colnames(covar_numeric),
effect_size = .numeric_effect_size(covar_numeric,
smart),
stringsAsFactors = FALSE)
if (ncol(covar_factors) > 0){
ma_sd <- bind_rows(ma_sd,
data.frame(covar = colnames(covar_factors),
effect_size = 1,
stringsAsFactors = FALSE)
)
}
ma <- left_join(ma, ma_sd, by = "covar")
ma[["effect_size"]][ma[["effect_size"]] < 0.01] <- 0.01
ma[["effect_size"]][ma[["effect_size"]] > 1] <- 1
ma[["type_variable"]] <- "categorical"
ma[["type_variable"]][ma[["covar"]] %in% colnames(covar_numeric)] <- "numeric"
ma
}
.model <- function(data, method = "lm"){
if (method == "lm"){
pc_sig <- lm(PC~., data=data) %>%
broom::tidy()
}else if (method == "lasso"){
pc_sig <- lm.lasso <- l1ce(PC ~ 0 + ., data=data, sweep.out = NULL) %>%
summary() %>%
.[["coefficients"]] %>%
broom::tidy()
}
names(pc_sig) <- c("term", "estimate", "std.error", "statistic", "p.value")
return(pc_sig)
}
# reduce covariates to significant ones that predict PCs
.reduce_covariates <- function(corMatrix, pcsMatrix, method = "lm"){
pcs <- colnames(pcsMatrix)[grepl("PC[0-9]+", colnames(pcsMatrix))]
significants <- lapply(pcs, function(pc){
pc_var <- corMatrix %>%
filter(fdr < 0.01, grepl(pc, compare)) %>%
arrange(abs(r)) %>%
.[["covar"]] %>%
as.character()
if (length(pc_var) == 0)
return(NULL)
data <- pcsMatrix[,c(pc, pc_var)]
colnames(data)[1] = "PC"
data[,2:ncol(data)] <- apply(data[,2:ncol(data), drop = FALSE], 2, scale)
pc_sig <- .model(data, method)
pc_sig[["PC"]] = pc
pc_sig %>% filter(p.value < 0.05)
}) %>% bind_rows() %>%
filter(!grepl("Intercept", !!!sym("term")))
if (nrow(significants) == 0)
return(data.frame(estimate=0, p.value=0, PC="", term=""))
significants[,c("estimate", "p.value", "PC", "term")]
}
#' Find correlation between pcs and covariates
#'
#' This function will calculate the pcs using prcomp function,
#' and correlate categorical and numerical variables from
#' metadata. The size of the dots indicates the importance of the
#' metadata, for instance, when the range of the values is pretty
#' small (from 0.001 to 0.002 in ribosimal content),
#' the correlation results is not important. If black stroke lines
#' are shown, the correlation analysis has a FDR < 0.05 for that
#' variable and PC.
#' Only significant variables according the linear model are colored.
#' See details to know
#' how this is calculated.
#'
#' @author: Lorena Pantano, Victor Barrera,
#' Kenneth Daily and Thanneer Malai Perumal
#'
#' @param counts normalized counts matrix
#' @param metadata data.frame with samples metadata.
#' @param fdr numeric value to use as cutoff to determine
#' the minimum fdr to consider significant correlations
#' between pcs and covariates.
#' @param scale boolean to determine wether counts matrix should be
#' scaled for pca. default FALSE.
#' @param minPC numeric value that will be used as cutoff
#' to select only pcs that explain more variability than this.
#' @param correlation character determining the method for the
#' correlation between pcs and covariates.
#' @param addCovDen boolean. Whether to add the covariates
#' dendograme to the plot to see covariates relationship.
#' It will show [degCorCov()] dendograme on top of the columns of
#' the heatmap.
#' @param legacy boolean. Whether to plot the legacy version.
#' @param smart boolean. Whether to avoid normalization of the
#' numeric covariates when calculating importance. This is not
#' used if `legacy = TRUE`. See @details for more information.
#' @param method character. Whether to use `lm` or `lasso` to
#' calculate the significance of the variable during reduction
#' step. See @details for more information.
#' @param plot Whether to plot or not the correlation matrix.
#' @details This method is adapeted from Daily et al 2017 article.
#' Principal components from PCA analysis are correlated with
#' covariates metadata. Factors are transformed to numeric variables.
#' Correlation is measured by `cor.test` function with Kendall method
#' by default.
#'
#' The size of the dot, or importance, indicates the importance of
#' the covariate based on the range of the values. Covariates
#' where the range is very small (like a % of mapped reads that
#' varies between 0.001 to 0.002) will have a very small size (0.1*max_size).
#' The maximum value is set to 5 units.
#' To get to importance, each covariate is normalized using this
#' equation: `1 - min(v/max(v))`,
#' and the minimum and maximum values are set to
#' 0.01 and 1 respectively. For instance, 0.5 would mean there is at least
#' 50% of difference between the minimum value and the maximum value.
#' Categorical variables are plot using the maximum size always, since
#' it is not possible to estimate the variability. By default, it
#' won't do `v/max(v)` if the values are already between 0-1 or
#' 0-100 (already normalized values as rates and percentages).
#' If you want to ignore the importance, use `legacy = TRUE`.
#'
#' Finally, a linear model is used to calculate the significance
#' of the covariates effect on the PCs. For that, this function
#' uses `lm` to regress the data and uses the p-value calculated by
#' each variable in the model to define significance (pvalue < 0.05).
#' `lm` or `lasso` can be used here.
#' @references
#' Daily, K. et al. Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell lines and derivatives. Sci Data 4, 170030 (2017).
#'
#' @return: list:
#'
#' * plot, heatmap showing the signifcance of the variables.
#' * corMatrix, correlation, p-value, FDR values
#' for each covariate and PCA pais
#' * pcsMatrix: PCs loading for each sample
#' * scatterPlot: plot for each significant covariate and
#' the PC values.
#' * significants: contains the significant covariates
#' using a linear model to predict the coefficient
#' of covariates that have some color in the plot.
#' All the significant covariates from the liner model analysis
#' are returned.
#'
#' @examples
#' data(humanGender)
#' library(DESeq2)
#' idx <- c(1:10, 75:85)
#' dse <- DESeqDataSetFromMatrix(assays(humanGender)[[1]][1:1000, idx],
#' colData(humanGender)[idx,], design=~group)
#' res <- degCovariates(log2(counts(dse)+0.5), colData(dse))
#' res <- degCovariates(log2(counts(dse)+0.5),
#' colData(dse), legacy = TRUE)
#' res$plot
#' res$scatterPlot[[1]]
#' @export
degCovariates <- function(counts, metadata,
fdr = 0.1,
scale = FALSE,
minPC = 5.0,
correlation = "kendall",
addCovDen = TRUE,
legacy = FALSE,
smart = TRUE,
method = "lm",
plot = TRUE) {
title <- paste(ifelse(scale, "s", "un-s"), "caled ",
" data in pca;\npve >= ",
minPC, "%;\n", correlation,
" cor ", sep = "")
message(paste("\nrunning pca and calculating correlations for:\n",
title, sep = ""))
metadata <- as.data.frame(metadata)
metadata <- degClean(metadata)
covar_class <- sapply(metadata[1,], class)
metadata <- metadata %>%
mutate_all(as.numeric) %>%
as.data.frame() %>%
set_rownames(row.names(metadata))
stopifnot(identical(colnames(counts), rownames(metadata)))
pcares <- .runpca(genesbysamples = counts,
scale_data_for_pca = scale,
min_pve_pct_pc = minPC)
samplepcvals <- pcares[["samplepcvals"]]
pve <- pcares[["pve"]]
original_names <- colnames(samplepcvals)
pc_pct <- data.frame(
pc = colnames(samplepcvals),
pct = paste(" (",
sprintf("%.2f", pve[1L:ncol(samplepcvals)]), "%)",
sep = ""),
stringsAsFactors = FALSE
)
# find covariates without any missing data
samplesbyfullcovariates <- metadata[, which(apply(metadata, 2L,
function(dat) all(!is.na(dat)))), drop = FALSE]
covar_class <- covar_class[colnames(samplesbyfullcovariates)]
exclude_vars_from_fdr <- setdiff(colnames(metadata),
colnames(samplesbyfullcovariates))
covar_factors <- samplesbyfullcovariates[,names(covar_class)[covar_class != "numeric"], drop = FALSE]
covar_numeric <- samplesbyfullcovariates[,names(covar_class)[covar_class == "numeric"], drop = FALSE]
samplesbyfullcovariates = cbind(covar_factors, covar_numeric)
corrRes <- .calccompletecorandplot(samplepcvals,
samplesbyfullcovariates,
correlation,
title,
weights =
pve[1L:dim(samplepcvals)[2L]],
exclude_vars_from_fdr)
ma <- corrRes[["mat"]]
ma[["r"]][ma[["fdr"]] > fdr] <- NA
ma[["fdr"]][ma[["fdr"]] > fdr] <- NA
corMa <- ma[, c("r", "compare", "covar")] %>%
spread(!!sym("compare"), !!sym("r")) %>%
remove_rownames() %>%
column_to_rownames("covar")
cor_meta <- .calccompletecorandplot(samplesbyfullcovariates,
samplesbyfullcovariates,
correlation,
"",
weights = 1L)
corMeta <- cor_meta[["mat"]][, c("r", "compare", "covar")] %>%
spread(!!sym("compare"), !!sym("r"), fill = 0) %>%
remove_rownames() %>%
column_to_rownames("covar")
hc <- hclust(as.dist((1-corMeta)^2),
method = "ward.D")
ma[["covar"]] = as.character(ma[["covar"]])
ma[["compare"]] = as.character(ma[["compare"]])
ma <- .effect_size(ma, covar_numeric, covar_factors)
samplepcvals <- as.data.frame(samplepcvals) %>%
set_colnames(original_names) %>%
rownames_to_column("samples")
samplepcvals <- bind_cols(samplepcvals,
metadata)
significants <- .reduce_covariates(ma, samplepcvals, method)
scatterPlot <- .generate_scatter_plot(samplepcvals, corrRes[["mat"]])
ma_plot <- left_join(ma,
significants,
by = c("compare" = "PC",
"covar" = "term")) %>%
left_join(pc_pct, by = c("compare" = "pc")) %>%
unite(col = "compare", !!!sym("compare"), !!!sym("pct"), sep = " ")
ma_plot[["r"]][is.na(ma_plot[["p.value"]])] = NA
if (legacy){
if (addCovDen){
p <- Heatmap(t(corMa),
name = "cor",
row_title = title,
cluster_rows = FALSE,
cluster_columns = hclust(as.dist((1-corMeta)^2),
method = "ward.D"),
col = colorRamp2(c(1, 0, -1),
c("darkorange", "white", "darkblue")))
}else{
p <- ggplot(ma, aes_(fill = ~r,x = ~covar,y = ~compare)) +
geom_tile() +
theme_minimal() +
ggtitle(title) +
scale_fill_gradient2(low = "darkblue", high = "darkorange",
guide = "colorbar", na.value = "grey90",
limits = c(-1L, 1L)) +
theme(axis.text.x = element_text(angle = 90L,
hjust = 1L,
vjust = 0.5))
if (sum(ma[["r"]] > 0, na.rm = TRUE))
p <- p + geom_text(data = ma[ma[["pvalue"]] < 0.05, ], aes(label="*"))
}
}else{
dhc <- as.dendrogram(hc)
# Rectangular lines
ddata <- dendro_data(dhc, type = "rectangle")
dn = ggplot(ddata[["segments"]]) +
geom_segment(aes(x = x, y = -y, xend = xend, yend = -yend)) +
scale_y_reverse(expand = c(0, 0)) +
scale_x_continuous(expand=c(0.01, 0.01)) +
xlab("") +
ylab("") +
theme_minimal() +
theme(axis.text.x = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
ma_plot[["covar"]] <- factor(ma_plot[["covar"]],
levels = hc$labels[hc$order])
# browser()
tile <- ggplot(ma_plot, aes_(x = ~covar,y = ~compare,
size = ~effect_size,
color = ~r,
fill = ~r,
shape = ~type_variable)) +
geom_point() +
geom_point(data = filter(ma_plot, !is.na(fdr)),
stroke = 1, color="black") +
theme_minimal() +
scale_shape_manual(values = c(22, 21)) +
scale_size_continuous(name = "importance",
limits = c(0.01, 1),
range = c(0.01, 5)) +
scale_color_gradient2(low = "darkblue", high = "darkorange",
guide = "colorbar", na.value = "grey90",
limits = c(-1L, 1L)) +
scale_fill_gradient2(low = "darkblue", high = "darkorange",
guide = "colorbar", na.value = "grey90",
limits = c(-1L, 1L)) +
xlab("") +
theme(axis.text.x = element_text(angle = 90L,
hjust = 1L,
vjust = 0.5),
legend.position = "bottom") +
scale_x_discrete(expand=c(0.01,0.01))
if (addCovDen){
p <- plot_grid(
dn, tile, align = "v",
nrow = 2, rel_heights = c(1,4)
) + ggtitle(title)
}else{
p <- tile + ggtitle(title)
}
}
if (plot) print(p)
invisible(list(
plot = p,
corMatrix = ma,
pcsMatrix = samplepcvals,
scatterPlot = scatterPlot,
significants = significants
))
}
degClean <- function(ma){
ma <- ma[,colSums(is.na(ma))<nrow(ma)]
lapply(ma, function(x) {
if (length(unique(x)) < length(x) * 0.20 & is.numeric(x))
x <- as.factor(x)
if ((class(x)[1] %in% c("factor", "character"))) {
.f = as.factor(x)
if (length(levels(.f)) < 2L)
return(NULL)
if (length(levels(.f)) > length(.f) * 0.80)
return(NULL)
return(.f)
}
if (sd(x, na.rm = TRUE) == 0)
return(NULL)
as.numeric(x)
}) %>% Filter(Negate(is.null), .) %>% bind_cols %>%
as.data.frame() %>%
set_rownames(row.names(ma))
}
#' Calculate the correlation relationshipt among all covariates
#' in the metadata table
#'
#' This function will calculate the correlation among
#' all columns in the metadata
#'
#' @author: Lorena Pantano, Kenneth Daily and Thanneer Malai Perumal
#'
#' @param metadata data.frame with samples metadata.
#' @param fdr numeric value to use as cutoff to determine
#' the minimum fdr to consider significant correlations
#' between pcs and covariates.
#' @param ... Parameters to pass to [ComplexHeatmap::Heatmap()].
#'
#' @return: list:
#' a) cor, data.frame with pair-wise correlations, pvalues, FDR
#' b) corMat, data.frame with correlation matrix
#' c) fdrMat, data.frame with FDR matrix
#' b) plot, Heatmap plot of correlation matrix
#' @examples
#' data(humanGender)
#' library(DESeq2)
#' idx <- c(1:10, 75:85)
#' dse <- DESeqDataSetFromMatrix(assays(humanGender)[[1]][1:1000, idx],
#' colData(humanGender)[idx,], design=~group)
#' cor <- degCorCov(colData(dse))
#' @export
degCorCov <- function(metadata, fdr=0.05, ...){
clean <- degClean(metadata) %>%
mutate_all(as.numeric)
cor <- .calccompletecorandplot(clean,
clean,
"kendall",
"",
weights = 1L)
corMat <- cor[["mat"]][, c("r", "compare", "covar")] %>%
spread(!!sym("compare"), !!sym("r")) %>% remove_rownames() %>%
column_to_rownames("covar")
fdrMat <- cor[["mat"]][, c("fdr", "compare", "covar")] %>%
spread(compare, fdr) %>% remove_rownames() %>%
column_to_rownames("covar")
corMat[fdrMat > fdr] <- 0
# corMat[fdrMat > 0.05] <- NA
if (sum(!is.na(corMat)) > 2) {
p <- Heatmap(corMat, name = "cor-value",
col = colorRamp2(c(-1, 0, 1),
c("steelblue", "white", "orange")),
row_dend_reorder = FALSE,
column_dend_reorder = FALSE, ...)
print(p)
}
invisible(list(cor = cor[["mat"]], corMat = corMat,
fdrMat = fdrMat, plot = p))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.