Nothing
# returns the size of the intersection of two network in the form of adjacency list with genes as entries (names of lists)
.netintersect = function(grn1,grn2){
#list with target genes as entry
genes = intersect(names(grn1),names(grn2))
return(sum(sapply(genes,function(g){
length(intersect(unlist(grn1[[g]]),unlist(grn2[[g]])))
})))
}
# given a data frame containing interactions (regulator -> gene, one per row)
# score the GRN and add the data in the coregnet object
.addOneRegulatoryEvidence=function(geneRegulatoryNetwork,evidenceData,evname){
################################################################################################################
#controlling input
# in the end, evlist should be an adjacency list and evidenceData a 2 (or more) column data frame.
if(class(geneRegulatoryNetwork) != "coregnet"){
stop("Uses only coregnet network as an input") }
if(is.data.frame(evidenceData) | is.matrix(evidenceData)){
if(ncol(evidenceData)<2){
stop("Evidence data should be either list or a two column data.frame (or matrix). Refer to the manual.")
}else{
# if evidence is in a matrix or a data frame, emove duplicate interactions, if possible by keeping the interaction with lowest "p.value"
evidenceData[,1]=as.character(evidenceData[,1])
evidenceData[,2]=as.character(evidenceData[,2])
# removes duplicated evidence. If a pvalue column is present, keeps only the lowest pvalue. Otherwise only keeps the two
evidenceData=.uniqueEvidenceDataFrameByPvalue(evidenceData)
evlist = tapply(evidenceData[,1],evidenceData[,2],function(i){return(i)}) }
}else{
stop("Evidence data should be a two column matrix or data.frame. Refer to the manual.")
}
################################################################################################################
# Intersection of gene and regulator names
# keep only the evidences about genes and regs that are in the network
originalGenes =length(unique(evidenceData[,2]))
originalReg =length(unique(evidenceData[,1]))
originalInt = nrow(evidenceData)
genesandregs=c(names(geneRegulatoryNetwork@adjacencyList$bygene),names(geneRegulatoryNetwork@adjacencyList$bytf))
commongenes = length(intersect(names(evlist),names(geneRegulatoryNetwork@adjacencyList$bygene)))
#print(commongenes)
commonreg = length(intersect(unique(unlist(evlist)),names(geneRegulatoryNetwork@adjacencyList$bytf)))
if(commongenes==0 | commonreg ==0){ return(NULL)}
evlist = evlist[intersect(names(evlist),names(geneRegulatoryNetwork@adjacencyList$bygene))]
geneNames = names(evlist)
evlist = lapply(evlist,intersect,y=names(geneRegulatoryNetwork@adjacencyList$bytf))
names(evlist) =geneNames
evlist =evlist[which(sapply(evlist,length)>0)]
evidenceData = evidenceData[which(evidenceData[,1] %in% genesandregs & evidenceData[,2] %in% genesandregs),]
################################################################################################################
# Scoring GRNs
# count for each grn the number of known evidences and normalize.
evcount = .parallelRegulationEvidence(geneRegulatoryNetwork@GRN, evlist)
if(sum(evcount) == 0){
message(paste("No evidence from",evname,"were found in the inferred network."))
return(NULL)
}
geneRegulatoryNetwork@GRN=data.frame(geneRegulatoryNetwork@GRN,evcount)
colnames(geneRegulatoryNetwork@GRN)[ncol(geneRegulatoryNetwork@GRN)]=evname
################################################################################################################
#
# add evidence data to the object of type coregnet
# evidenceData = cbind(evidenceData,matrix(NA,nrow=nrow(evidenceData),ncol=(4-ncol(evidenceData))))
colnames(evidenceData)[1:2] = c("reg","target")
geneRegulatoryNetwork@evidences[[evname]] = evidenceData
desc=.descriptionUpdate(geneRegulatoryNetwork,evname,"regulatory")
eviDesc = c("regulatory",originalGenes,originalReg,originalInt,desc)
if(nrow(geneRegulatoryNetwork@evidenceDescription) == 0){
geneRegulatoryNetwork@evidenceDescription = data.frame(t(eviDesc),stringsAsFactors=FALSE)
colnames(geneRegulatoryNetwork@evidenceDescription)=c("evidenceType","originalGene","originalReg","originalEvidence",
"commonGene","commonReg","evidences","commonEvidences", "enrichment","p.value")
rownames(geneRegulatoryNetwork@evidenceDescription)[1] = evname
}else{
geneRegulatoryNetwork@evidenceDescription = rbind(geneRegulatoryNetwork@evidenceDescription, eviDesc)
}
rownames(geneRegulatoryNetwork@evidenceDescription)[nrow(geneRegulatoryNetwork@evidenceDescription)] = evname
return(geneRegulatoryNetwork)
}
# given a data frame containing interactions (regulator -> gene, one per row)
# score the GRN and add the data in the coregnet object
.addOneCoRegulatoryEvidence=function(geneRegulatoryNetwork,evidenceData,evname){
################################################################################################################
#controlling input
# in the end, evlist should be an adjacency list and evidenceData a 2 (or more) column data frame.
if(is.data.frame(evidenceData) | is.matrix(evidenceData)){
if(ncol(evidenceData)<2){
stop("Evidence data should be either list or a two column data.frame (or matrix). Refer to the manual.")
}else{
# if evidence is in a matrix or a data frame, emove duplicate interactions, if possible by keeping the interaction with lowest "p.value"
evidenceData[,1]=as.character(evidenceData[,1])
evidenceData[,2]=as.character(evidenceData[,2])
# removes duplicated evidence. If a pvalue column is present, keeps only the lowest pvalue. Otherwise only keeps the two
evidenceData=.uniqueEvidenceDataFrameByPvalue(evidenceData)
# Need the set of interactions in the form of an adjancecy list.
# Because the interaction are undirected and to ease the computations, all edges are listed twice (A to B and B to A)
ppi = as.matrix(unique(evidenceData[,1:2]))
ppi = unique(rbind(ppi[,1:2],ppi[,2:1]))
ppi= unique(ppi[which(ppi[,1] != ppi[,2]),])
evlist = tapply(ppi[,1],ppi[,2],function(i){return(i)}) }
}else{
stop("Evidence data should be a two column matrix or data.frame. Refer to the manual.")
}
################################################################################################################
# Intersection of gene and regulator names
# keep only the evidences about genes and regs that are in the network
originalReg =length(unique(unlist(c(evidenceData[,1],evidenceData[,2]))))
originalInt = nrow(ppi) /2
genesandregs=c(names(geneRegulatoryNetwork@adjacencyList$bygene),names(geneRegulatoryNetwork@adjacencyList$bytf))
commonreg = length(intersect(unique(unlist(evlist)),names(geneRegulatoryNetwork@adjacencyList$bytf)))
if( commonreg ==0){ return(NULL)}
evlist = evlist[intersect(names(evlist),names(geneRegulatoryNetwork@adjacencyList$bytf))]
geneNames = names(evlist)
evlist = lapply(evlist,intersect,y=names(geneRegulatoryNetwork@adjacencyList$bytf))
names(evlist) =geneNames
evlist =evlist[which(sapply(evlist,length)>0)]
evidenceData = evidenceData[which(evidenceData[,1] %in% genesandregs & evidenceData[,2] %in% genesandregs),]
################################################################################################################
# Scoring GRNs
# count for each grn the number of known evidences and normalize.
evcount = .parallelRegulatorCooperativityEvidence(geneRegulatoryNetwork@GRN, evlist)
if(sum(evcount) == 0){
print(paste("No evidence from",evname,"were found in the inferred network."))
return(NULL)
}
geneRegulatoryNetwork@GRN=data.frame(geneRegulatoryNetwork@GRN,evcount)
colnames(geneRegulatoryNetwork@GRN)[ncol(geneRegulatoryNetwork@GRN)]=evname
################################################################################################################
#
# add evidence data to the object of type coregnet
# evidenceData = cbind(evidenceData,matrix(NA,nrow=nrow(evidenceData),ncol=(4-ncol(evidenceData))))
colnames(evidenceData)[1:2] = c("reg1","reg2")
geneRegulatoryNetwork@evidences[[evname]] = evidenceData
desc=.descriptionUpdate(geneRegulatoryNetwork,evname,"coregulatory")
eviDesc = c("coregulatory",NA,originalReg,originalInt,desc)
if(nrow(geneRegulatoryNetwork@evidenceDescription) == 0){
geneRegulatoryNetwork@evidenceDescription = data.frame(t(eviDesc),stringsAsFactors=FALSE)
colnames(geneRegulatoryNetwork@evidenceDescription)=c("evidenceType","originalGene","originalReg","originalEvidence",
"commonGene","commonReg","evidences","commonEvidences", "enrichment","p.value")
rownames(geneRegulatoryNetwork@evidenceDescription)[1] = evname
}else{
geneRegulatoryNetwork@evidenceDescription = rbind(geneRegulatoryNetwork@evidenceDescription, eviDesc)
}
rownames(geneRegulatoryNetwork@evidenceDescription)[nrow(geneRegulatoryNetwork@evidenceDescription)] = evname
return(geneRegulatoryNetwork)
}
.descriptionUpdate = function(regnet,evname,type="regulatory"){
ev=regnet@evidences[[evname]]
if(type=="regulatory"){
net=coregnetToDataframe(regnet)
commongenes = intersect(unique(ev[,2]),unique(net[,2]))
commonreg = intersect(unique(ev[,1]),unique(net[,1]))
ev=ev[which(ev[,1] %in% commonreg & ev[,2] %in% commongenes),1:2]
net=net[which(net[,1] %in% commonreg & net[,2] %in% commongenes),1:2]
evg=igraph::graph.data.frame(ev)
if(vcount(evg)==0){
return(c(length(commongenes),length(commonreg),NA,NA,NA ,NA))
}
g=igraph::graph.data.frame(net)
n21=length(igraph::E(igraph::graph.difference(evg, g)))
n12=length(igraph::E(igraph::graph.difference(g,evg )))
n11=length(igraph::E(igraph::graph.intersection(g,evg)))
n22=(length(commonreg)*length(commongenes))-n11-n12-n21
f=fisher.test(matrix(c(n11,n12,n21,n22),ncol=2),alternative="great")
return(c(length(commongenes),length(commonreg),length(igraph::E(evg)),n11,f$estimate ,f$p.value))
}else{
coreg=coregulators(regnet)
alltfs = unique(c(as.character(unlist(coreg[,1])),as.character(unlist(coreg[,2]))))
coregG =igraph::simplify(igraph::graph.edgelist(as.matrix(coreg[,1:2]),directed=FALSE))
g=igraph::simplify(igraph::graph.edgelist(as.matrix(regnet@evidences[[evname]][,1:2]),directed=FALSE))
TF = intersect(igraph::V(g)$name,alltfs)
subg=igraph::induced.subgraph(g, which(V(g)$name %in%TF))
subcoreg=igraph::induced.subgraph(coregG, which(igraph::V(coregG)$name %in%TF))
if(vcount(subcoreg)==0){
return(c(NA,length(TF),NA,NA,NA ,NA))
}
n11=length(igraph::E(igraph::graph.intersection(subcoreg,subg)))
n21=length(igraph::E(igraph::graph.difference(subg, subcoreg)))
n12=length(igraph::E(igraph::graph.difference(subcoreg,subg )))
n22=((length(TF)*(length(TF)-1))/2)-n11-n12-n21
#print(matrix(c(n11,n12,n21,n22),ncol=2))
f=fisher.test(matrix(c(n11,n12,n21,n22),ncol=2),alternative="great")
return(c(NA,length(TF),length(igraph::E(subg)),n11,f$estimate ,f$p.value))
}
}
.uniqueEvidenceDataFrameByPvalue =function(evdataframe){
# try possible col names that would correspond to pvalues
possiblepvaluecolumnnames=c("adj.p.value","adj.pvalue","p.value")
#uniforming column names, setting to lower case and changin - to .
colnames(evdataframe) =tolower(colnames(evdataframe))
colnames(evdataframe)=gsub("-",".",colnames(evdataframe))
# if only two columns, should be two character column, first with Regulators second with target genes.
if(ncol(evdataframe) ==2){
return(unique(evdataframe))
#if one of the additional columns
}else if(ncol(evdataframe)>2 & sum(possiblepvaluecolumnnames %in% colnames(evdataframe) )>0 ){
pvalcol=intersect(possiblepvaluecolumnnames,colnames(evdataframe))[1]
interactionsonly = apply(evdataframe[,1:2],1,paste,collapse=" ")
dupsint = interactionsonly[which(base::duplicated(interactionsonly))]
if(length(dupsint)==0){
return(evdataframe)
}
nondupinteractions = evdataframe[interactionsonly[which(!interactionsonly %in% dupsint)],]
minpval=lapply(dupsint,function(oneInt){
dupev=evdataframe[which(interactionsonly == oneInt),]
return(dupev[which.min(dupev[,pvalcol])])
})
minpval=do.call(rbind,minpval)
return(rbind(nondupinteractions,minpval))
}else{
# if no pvalue column, test if there are duplicates.
if(nrow(evdataframe) > nrow(unique(evdataframe[,1:2]))){
return(unique(evdataframe[,1:2]))
}else{
return(evdataframe)
}
}
}
.parallelRegulatorCooperativityEvidence <- function(grns,ppi,targetGene = NULL )
{
if(is.null(targetGene)) targetGene = unique(grns[,1]);
evidence =suppressWarnings( pvec(targetGene,function(x,ppi,grns) {
ex = .regulatorCooperativityEvidence(grns[which(grns[,1] %in% x),],ppi)
return(unlist(ex))
}, ppi=ppi,grns=grns))
if(length(evidence) != nrow(grns)){stop("Evidence and GRN have different size. ERROR !")}
return(unlist(evidence))
}
.regulatorCooperativityEvidence <- function(grns,ppi)
{
res = apply(grns,1,.addRegulatorCooperativityEvidence,ppi=ppi)
return(res)
}
.addRegulatorCooperativityEvidence <- function(x,ppi)
{
activ=c()
inhib=c()
activators = as.character(x[2])
activ = unlist(strsplit(activators, " "))
inhibitors = as.character(x[3])
inhib = unlist(strsplit(inhibitors, " "))
if( length(activ )> 1) {
activppiKnown =sum(unlist(ppi[activ],use.names=FALSE) %in% activ)
possibleAPPI = ((length(activ)^2)-length(activ) )
}else {
activppiKnown=0
activatorCorrectedEvidence=0
possibleAPPI=0
}
if(length(inhib )> 1) {
inhibppiKnown =sum(unlist(ppi[inhib],use.names=FALSE) %in% inhib)
possibleIPPI=((length(inhib)^2)-length(inhib) )
}else {
inhibitorCorrectedEvidence=0
inhibppiKnown=0
possibleIPPI=0
}
if(possibleIPPI+possibleAPPI == 0){return(0)}else{
return( (inhibppiKnown+activppiKnown) / (possibleAPPI+possibleIPPI) )
}
}
.parallelRegulationEvidence <- function(grns,tfgi,targetGene = NULL ,multi=TRUE)
{
if(is.null(targetGene)) targetGene = unique(grns[,1]);
if(multi){
evidence = suppressWarnings( pvec(targetGene,function(gene,tfgi,grns)
{
.regulationEvidence(grns[which(grns[,1] %in% gene),],tfgi[gene])
}
,tfgi=tfgi,grns=grns))
}else{
evidence = lapply(targetGene,function(gene,tfgi,grns)
{
.regulationEvidence(grns[which(grns[,1] %in% gene),],tfgi[gene])
}
,tfgi=tfgi,grns=grns)
}
if(length(evidence) != nrow(grns)){stop("Evidence and GRN have different size. ERROR !")}
return(unlist(evidence))
}
.regulationEvidence <- function(grns,tfgi) apply(grns,1,.addRegulationEvidence,tfgi=tfgi);
.addRegulationEvidence <- function(x,tfgi)
{
target = as.character(x[1])
activ=c()
inhib=c()
activators = as.character(x[2])
activ = unlist(strsplit(activators, " "))
inhibitors = as.character(x[3])
inhib = unlist(strsplit(inhibitors, " "))
knownReg = unique(unlist(tfgi[[target]], use.names=FALSE))
nreg=0
if( ! "EMPTY" %in% activ | sum(is.na(activ))==0 )
{
activKnown = length(intersect(knownReg ,activ ))
nreg=nreg+length(activ)
}else
{
nreg=nreg+0
activKnown=0
}
if( ! "EMPTY" %in%inhib | sum(is.na(inhib))==0)
{
inhibKnown = length(intersect(knownReg ,inhib ))
nreg=nreg+length(inhib)
}else {
nreg=nreg+0
inhibKnown=0
}
return ((activKnown+inhibKnown)/nreg)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.