R/visualise_features.R

Defines functions .extract_filter_features .extract_facet_by .extract_group_by .extract_exprsMat visualiseExprsList fitMixtures scatterSingle visualiseExprs

Documented in visualiseExprs visualiseExprsList

#' visualiseExprs
#'
#' A function to visualise the features distribtuion
#'
#'
#' @param sce A singlecellexperiment object
#' @param plot Type of plot, includes boxplot, violin, jitter, density,
#' and pairwise. By default is boxplot
#' @param altExp_name A character indicates which expression matrix is used.
#' by default is none (i.e. RNA).
#' @param exprs_value A character indicates which expression value
#' in assayNames is used.
#' @param group_by A character indicates how is the expression
#' will be group in the plots (stored in colData).
#' @param facet_by A character indicates how is the expression
#' will be lay out panels in a grid in the plots (stored in colData).
#' @param feature_subset A vector of characters indicates
#' the subset of features that are used for visualisation
#' @param cell_subset A vector of characters indicates
#' the subset of cells that are used for visualisation
#' @param n A numeric indicates the top expressed features to show.
#' @param threshold Thresholds of high expresion for features
#' (only is used for pairwise plot).
#'
#'
#' @return A ggplot to visualise te features distribution
#'
#' @examples
#' data(sce_control_subset)
#' visualiseExprs(sce_control_subset,
#' plot = "boxplot",
#' group_by = "SNF_W_louvain",
#' feature_subset = c("hg19_CD8A"))
#'
#' visualiseExprs(sce_control_subset,
#' plot = "density",
#' altExp_name = "ADT",
#' group_by = "SNF_W_louvain",
#' feature_subset = c("CD8", "CD4"))
#'
#' @importFrom Matrix rowMeans
#' @importFrom reshape2 melt
#' @importFrom SingleCellExperiment altExp altExpNames
#' @importFrom SummarizedExperiment assayNames assay colData
#' @importFrom  ggridges geom_density_ridges2
#' @importFrom gridExtra grid.arrange
#' @importFrom utils combn
#' @import ggplot2
#' @export

visualiseExprs <- function(sce,
                           plot = c("boxplot", "violin", "jitter",
                                    "density", "pairwise"),
                           altExp_name = c("none"),
                           exprs_value = "logcounts",
                           group_by = NULL,
                           facet_by = NULL,
                           feature_subset = NULL,
                           cell_subset = NULL,
                           n = NULL,
                           threshold = NULL) {

    plot <- match.arg(plot, c("boxplot", "violin", "jitter",
                              "density", "pairwise"))


    if (!is.null(cell_subset)) {
        if (sum(!cell_subset %in% colnames(sce)) != 0) {
            stop("sce does not contain some or
                 all of cell_subset as cell names")
        }
    } else {
        cell_subset <- colnames(sce)
    }



    exprsMat <- .extract_exprsMat(sce, cell_subset, altExp_name, exprs_value)

    group_by_info <- .extract_group_by(sce, group_by, cell_subset)

    facet_by_info <- .extract_facet_by(sce, facet_by)


    exprsMat <- .extract_filter_features(exprsMat, feature_subset, n)

    exprsMat <- as.matrix(exprsMat)




    if (plot == "pairwise") {



        if (!is.null(threshold)) {
            if (length(threshold) == 1) {
                threshold <- rep(threshold, length(feature_subset))
            }

            if (length(threshold) != length(feature_subset)) {
                stop("length of threshold is not equal to
             the length of the features subset.")
            }

            names(threshold) <- feature_subset
        }

        combination <- utils::combn(feature_subset, 2)

        ggList <- apply(combination, 2, function(x) {
            suppressMessages(scatterSingle(exprsMat[x, ],
                                           threshold = threshold[x]))
        })



        do.call(gridExtra::grid.arrange, c(ggList,
                                           ncol = min(length(ggList), 2)))
    } else {

        df_toPlot <- reshape2::melt(exprsMat)
        colnames(df_toPlot) <- c("features", "cells", "value")
        df_toPlot$group <- group_by_info[as.character(df_toPlot$cells)]
        df_toPlot$facet <- facet_by_info[as.character(df_toPlot$cells)]

        if (is.null(facet_by)) {
            g_facet <- facet_grid(~df_toPlot$features)
        } else {
            g_facet <- facet_grid(df_toPlot$features~df_toPlot$facet)
        }

        if (plot == "boxplot") {


            if (!is.null(group_by)) {

                color_values <- cite_colorPal(nlevels(df_toPlot$group))
                g <- ggplot(df_toPlot, aes(x = .data$group,
                                           y = .data$value,
                                           fill = .data$group)) +
                    geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                                 outlier.alpha = 0.8, width = 0.3) +
                    scale_fill_manual(values = color_values) +
                    theme_bw() +
                    ylab(exprs_value) +
                    g_facet +
                    xlab("") +
                    labs(fill = group_by)

            } else {
                g <- ggplot(df_toPlot, aes(x = .data$features,
                                           y = .data$value,
                                           fill = .data$features)) +
                    geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                                 outlier.alpha = 0.8,
                                 width = 0.3) +
                    scale_fill_viridis_d(direction = -1, end = 0.95) +
                    theme_bw() +
                    ylab(exprs_value) +
                    xlab("") +
                    theme(legend.position = "none")
            }

        }

        if (plot == "violin") {
            if (!is.null(group_by)) {

                color_values <- cite_colorPal(nlevels(df_toPlot$group))

                g <- ggplot(df_toPlot, aes(x = .data$group,
                                           y = .data$value)) +
                    geom_violin(aes(fill = .data$group)) +
                    geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                                 outlier.alpha = 0.8,
                                 width = 0.05) +
                    scale_fill_manual(values = color_values) +
                    theme_bw() +
                    ylab(exprs_value) +
                    g_facet +
                    xlab("") +
                    labs(fill = group_by)

            } else {
                g <- ggplot(df_toPlot, aes(x = .data$features,
                                           y = .data$value)) +
                    geom_violin(aes(fill = .data$features)) +
                    geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                                 outlier.alpha = 0.8,
                                 width = 0.05) +
                    scale_fill_viridis_d(direction = -1, end = 0.95) +
                    theme_bw() +
                    ylab(exprs_value) +
                    xlab("") +
                    theme(legend.position = "none")
            }
        }

        if (plot == "jitter")  {
            if (!is.null(group_by)) {

                color_values <- cite_colorPal(nlevels(df_toPlot$group))
                g <- ggplot(df_toPlot, aes(x = .data$group,
                                           y = .data$value)) +
                    geom_jitter(aes(color = .data$group),
                                size = 0.5, alpha = 0.5) +
                    scale_color_manual(values = color_values) +
                    theme_bw() +
                    ylab(exprs_value) +
                    g_facet +
                    xlab("") +
                    labs(color = group_by)

            } else {
                g <- ggplot(df_toPlot, aes(x = .data$features,
                                           y = .data$value)) +
                    geom_jitter(aes(color = .data$features),
                                size = 0.5, alpha = 0.5) +
                    scale_color_viridis_d(direction = -1, end = 0.95) +
                    coord_flip() +
                    theme_bw() +
                    ylab(exprs_value) +
                    xlab("") +
                    theme(legend.position = "none")
            }
        }

        if (plot == "density")  {
            if (!is.null(group_by)) {

                color_values <- cite_colorPal(nlevels(df_toPlot$group))
                g <- ggplot(df_toPlot, aes(y = .data$group,
                                           x = .data$value)) +
                    ggridges::geom_density_ridges2(aes(fill = .data$group),
                                                   alpha = 0.5) +
                    scale_fill_manual(values = color_values) +
                    theme_bw() +
                    ylab(group_by) +
                    g_facet +
                    xlab(exprs_value) +
                    labs(fill = group_by)

            } else {
                g <- ggplot(df_toPlot, aes(x = .data$value,
                                           y = .data$features)) +
                    ggridges::geom_density_ridges2(aes(fill = .data$features),
                                                   alpha = 0.5) +
                    scale_fill_viridis_d(direction = -1, end = 0.95) +
                    theme_bw() +
                    ylab(exprs_value) +
                    xlab("") +
                    theme(legend.position = "none")
            }
        }
        return(g)
    }

}







# A function to generate scatter plot pairwise feature expression


scatterSingle <- function(exprsMat, group = NULL, threshold = NULL) {


    df <- data.frame(t(as.matrix(exprsMat)))

    colnames(df) <- lapply(strsplit(rownames(exprsMat), "\\."), "[[", 1)


    if (is.null(group)) {

        if (is.null(threshold)) {
            threshold <- apply(exprsMat, 1, fitMixtures)
        }

        threshold_matrix <- t(vapply(threshold, function(x) {
            rep(x, ncol(exprsMat))
        }, numeric(ncol(exprsMat))))

        exprsMat_pass <- exprsMat > threshold_matrix

        nn <- paste(c(rownames(exprsMat), ""), collapse = "-")
        pp <- paste(c(rownames(exprsMat), ""), collapse = "+")
        np <- paste(rownames(exprsMat)[1], "-",
                    rownames(exprsMat)[2], "+", sep = "")
        pn <- paste(rownames(exprsMat)[1], "+",
                    rownames(exprsMat)[2], "-", sep = "")
        group <- rep(nn , ncol(exprsMat))
        group[exprsMat_pass[1, ] & exprsMat_pass[2, ]] <- pp
        group[exprsMat_pass[1, ] & !exprsMat_pass[2, ]] <- pn
        group[!exprsMat_pass[1, ] & exprsMat_pass[2, ]] <- np

        group <- factor(group, levels = c(nn, np, pn, pp))

        point_col <- c("grey50", "#377EB8", "#E41A1C", "#984EA3")

        names(point_col) <- levels(group)

        col_layer <- scale_color_manual(values = point_col)
    } else{
        col_layer <- scale_color_hue()
    }



    pmain <- ggplot(df, aes(x = df[, 1], y = df[, 2], color = group)) +
        geom_point(alpha = 0.5) +
        geom_hline(yintercept = threshold[2], col = "red",
                   linetype = 2, size = 1) +
        geom_vline(xintercept = threshold[1], col = "red",
                   linetype = 2, size = 1) +
        col_layer +
        scale_x_continuous(position = "top") +
        scale_y_continuous(position = "right") +
        theme_bw() +
        theme(aspect.ratio = 1) +
        xlab(colnames(df)[1]) +
        ylab(colnames(df)[2])




    xdens <- cowplot::axis_canvas(pmain, axis = "x") +
        geom_density(data = df, aes(x = df[, 1], fill = exprsMat_pass[1, ],
                                    alpha = 0.5)) +
        scale_fill_manual(values = c("grey50", "#E41A1C")) +
        scale_y_reverse() +
        NULL

    ydens <- cowplot::axis_canvas(pmain, axis = "y", coord_flip = TRUE) +
        geom_density(data = df, aes(x = df[, 2],
                                    fill = exprsMat_pass[2, ], alpha = 0.5)) +
        coord_flip() +
        scale_y_reverse() +
        scale_fill_manual(values = c("grey50", "#377EB8")) +
        NULL

    p1 <- cowplot::insert_xaxis_grob(pmain, xdens,
                                     grid::unit(.2, "null"),
                                     position = "bottom")

    p2 <- cowplot::insert_yaxis_grob(p1, ydens,
                                     grid::unit(.2, "null"), position = "left")

    # ggdraw(p2)
    return(p2)
}


fitMixtures <- function(vec) {
    km <- stats::kmeans(vec, centers = 2, nstart = 1000)
    mixmdl <- try(mixtools::normalmixEM(vec,
                                        fast = TRUE, maxrestarts = 1000,
                                        k = 2, maxit = 10000,
                                        mu = km$centers[,1],
                                        ECM = TRUE, verb = FALSE),
                  silent = TRUE)



    if ("try-error" %in% methods::is(mixmdl)) {
        threshold <- min(max(vec[km$cluster == 1]), max(vec[km$cluster == 2]))
    } else {
        threshold <- getThreshold(mixmdl)
    }
    return(threshold)
}



#' visualiseExprsList
#'
#' A function to visualise the features distribtuion for
#' a list of SingleCellExperiment
#'
#'
#' @param sce_list A list of SingleCellExperiment object
#' @param plot Type of plot, includes boxplot, violin, jitter, density,
#' and pairwise. By default is boxplot
#' @param altExp_name A character indicates which expression matrix is used.
#' by default is none (i.e. RNA).
#' @param exprs_value A character indicates which expression value
#' in assayNames is used.
#' @param group_by A character indicates how is the expression
#' will be group in the plots (stored in colData).
#' @param feature_subset A vector of characters indicates
#' the subset of features that are used for visualisation
#' @param cell_subset A vector of characters indicates
#' the subset of cells that are used for visualisation
#' @param n A numeric indicates the top expressed features to show.
#'
#' @return A ggplot to visualise te features distribution
#'
#' @examples
#' data(sce_control_subset, package = "CiteFuse")
#' data(sce_ctcl_subset, package = "CiteFuse")
#' visualiseExprsList(sce_list = list(control = sce_control_subset,
#' ctcl = sce_ctcl_subset),
#' plot = "boxplot",
#' altExp_name = "none",
#' exprs_value = "logcounts",
#' feature_subset = c("hg19_CD8A"),
#' group_by = c("SNF_W_louvain", "SNF_W_louvain"))
#'
#'
#' @importFrom Matrix rowMeans
#' @importFrom reshape2 melt
#' @importFrom SingleCellExperiment altExp altExpNames
#' @importFrom SummarizedExperiment assayNames assay colData
#' @importFrom  ggridges geom_density_ridges2
#' @importFrom gridExtra grid.arrange
#' @importFrom utils combn
#' @importFrom  methods is
#' @importFrom rlang .data
#' @import ggplot2
#' @export

visualiseExprsList <- function(sce_list,
                               plot = c("boxplot", "violin", "jitter",
                                        "density"),
                               altExp_name = "none",
                               exprs_value = "logcounts",
                               group_by = NULL,
                               feature_subset = NULL,
                               cell_subset = NULL,
                               n = NULL) {

    plot <- match.arg(plot, c("boxplot", "violin",
                              "jitter", "density"))

    dataset_name <- names(sce_list)

    if (is.null(dataset_name)) {
        dataset_name <- paste("dataset", seq_len(sce_list), sep = "_")
    }

    if (!is.null(cell_subset)) {

        if (!"list" %in% methods::is(cell_subset) |
            length(cell_subset) != length(sce_list)) {
            stop("cell_subset needs to be a list that
           equal to the length of sce_list")
        }

        for (i in seq_len(length(sce_list))) {
            if (sum(!cell_subset[[i]] %in% colnames(sce_list[[i]])) != 0) {
                stop("sce does not contain some or
                     all of cell_subset as cell names")
            }
        }
    } else{
        cell_subset <- lapply(sce_list, colnames)
    }

    exprsMatList <- lapply(seq_len(length(sce_list)), function(i) {
        exprs <- .extract_exprsMat(sce_list[[i]],
                                   cell_subset[[i]],
                                   altExp_name, exprs_value)
    })

    names(exprsMatList) <- dataset_name

    if (length(group_by) == 1) {
        group_by <- rep(group_by, length(sce_list))
    }

    group_by_info_list <- lapply(seq_len(length(sce_list)), function(i) {
        group_info <- .extract_group_by(sce_list[[i]],
                                        group_by = group_by[i],
                                        cell_subset = cell_subset[[i]],
                                        factor = FALSE)

        if (!is.null(group_info)) {
            names(group_info) <- paste(colnames(exprsMatList[[i]]),
                                       dataset_name[i], sep = "_")
        }

        group_info
    })

    group_by_info_list <- unlist(group_by_info_list)

    exprsMatList <- lapply(exprsMatList, .extract_filter_features,
                           feature_subset = feature_subset, n = n)



    df_toPlot <- reshape2::melt(exprsMatList)
    colnames(df_toPlot) <- c("features", "cells", "value", "dataset")
    df_toPlot$id <- paste(df_toPlot$cells, df_toPlot$dataset, sep = "_")
    df_toPlot$facet <- df_toPlot$dataset

    if (!is.null(group_by)) {
        df_toPlot$group <- factor(group_by_info_list[df_toPlot$id])
        g_facet <- facet_grid(df_toPlot$features~df_toPlot$facet,
                              scales = "free_x")
    } else {
        g_facet <- facet_grid(~df_toPlot$facet,
                              scales = "free_x")
    }



    if (plot == "boxplot") {

        if (!is.null(group_by)) {

            color_values <- cite_colorPal(nlevels(df_toPlot$group))
            g <- ggplot(df_toPlot, aes(x = .data$group,
                                       y = .data$value,
                                       fill = .data$group)) +
                geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                             outlier.alpha = 0.8, width = 0.3) +
                scale_fill_manual(values = color_values) +
                theme_bw() +
                ylab(exprs_value) +
                g_facet +
                xlab("") +
                labs(fill = group_by) +
                theme(legend.position = "none")

        } else {
            g <- ggplot(df_toPlot, aes(x = .data$features,
                                       y = .data$value,
                                       fill = .data$features)) +
                geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                             outlier.alpha = 0.8,
                             width = 0.3) +
                scale_fill_viridis_d(direction = -1, end = 0.95) +
                theme_bw() +
                ylab(exprs_value) +
                g_facet +
                xlab("") +
                theme(legend.position = "none")
        }

    }

    if (plot == "violin") {
        if (!is.null(group_by)) {

            color_values <- cite_colorPal(nlevels(df_toPlot$group))

            g <- ggplot(df_toPlot, aes(x = .data$group,
                                       y = .data$value)) +
                geom_violin(aes(fill = .data$group)) +
                geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                             outlier.alpha = 0.8,
                             width = 0.05) +
                scale_fill_manual(values = color_values) +
                theme_bw() +
                ylab(exprs_value) +
                g_facet +
                xlab("") +
                labs(fill = group_by) +
                theme(legend.position = "none")

        } else {
            g <- ggplot(df_toPlot, aes(x = .data$features,
                                       y = .data$value)) +
                geom_violin(aes(fill = .data$features)) +
                geom_boxplot(outlier.size = 1, outlier.stroke = 0.3,
                             outlier.alpha = 0.8,
                             width = 0.05) +
                scale_fill_viridis_d(direction = -1, end = 0.95) +
                theme_bw() +
                g_facet +
                ylab(exprs_value) +
                xlab("") +
                theme(legend.position = "none")
        }
    }

    if (plot == "jitter")  {
        if (!is.null(group_by)) {

            color_values <- cite_colorPal(nlevels(df_toPlot$group))

            g <- ggplot(df_toPlot, aes(x = .data$group,
                                       y = .data$value)) +
                geom_jitter(aes(color = .data$group), size = 0.5, alpha = 0.5) +
                scale_color_manual(values = color_values) +
                theme_bw() +
                ylab(exprs_value) +
                g_facet +
                xlab("") +
                labs(color = group_by) +
                theme(legend.position = "none")

        } else {
            g <- ggplot(df_toPlot, aes(x = .data$features, y = .data$value)) +
                geom_jitter(aes(color = .data$features),
                            size = 0.5, alpha = 0.5) +
                scale_color_viridis_d(direction = -1, end = 0.95) +
                coord_flip() +
                theme_bw() +
                g_facet +
                ylab(exprs_value) +
                xlab("") +
                theme(legend.position = "none")
        }
    }

    if (plot == "density")  {
        if (!is.null(group_by)) {

            color_values <- cite_colorPal(nlevels(df_toPlot$group))

            g <- ggplot(df_toPlot, aes(y = .data$group,
                                       x = .data$value)) +
                ggridges::geom_density_ridges2(aes(fill = .data$group),
                                               alpha = 0.5) +
                scale_fill_manual(values = color_values) +
                theme_bw() +
                ylab(group_by) +
                facet_grid(df_toPlot$features~df_toPlot$facet,
                           scales = "free_y") +
                xlab(exprs_value) +
                labs(fill = group_by) +
                theme(legend.position = "none")

        } else {
            g <- ggplot(df_toPlot, aes(x = .data$value,
                                       y = .data$features)) +
                ggridges::geom_density_ridges2(aes(fill = .data$features),
                                               alpha = 0.5) +
                scale_fill_viridis_d(direction = -1, end = 0.95) +
                theme_bw() +
                g_facet +
                ylab(exprs_value) +
                xlab("") +
                theme(legend.position = "none")
        }
    }
    return(g)


}

#' @importFrom SingleCellExperiment altExpNames
#' @importFrom SummarizedExperiment assayNames assay

.extract_exprsMat <- function(sce, cell_subset, altExp_name, exprs_value) {

    if (!altExp_name %in% c("RNA", "none")) {
        if (!altExp_name %in% SingleCellExperiment::altExpNames(sce)) {
            stop("sce does not contain altExp_name as altExpNames")
        }

        if (!exprs_value %in%
            SummarizedExperiment::assayNames(altExp(sce, altExp_name))) {
            stop("sce does not contain exprs_value as assayNames for altExp")
        }

        exprsMat <- SummarizedExperiment::assay(altExp(sce[, cell_subset],
                                                       altExp_name),
                                                exprs_value)

    } else {

        # if altExp_name is "none", then the assay in
        # SingleCellExperiment is extracted (RNA in most of the cases)

        exprsMat <- SummarizedExperiment::assay(sce[, cell_subset], exprs_value)
    }

    return(exprsMat)

}



#' @importFrom SummarizedExperiment colData

.extract_group_by <- function(sce, group_by, cell_subset, factor = TRUE) {
    sce <- sce[, cell_subset]
    if (!is.null(group_by)) {
        if (!group_by %in% colnames(SummarizedExperiment::colData(sce))) {
            stop("group_by is not a column name of sce's colData")
        }
        group_by_info <- as.factor(colData(sce)[, group_by])
        if (!factor) {
            group_by_info <- as.character(group_by_info)
        }
        names(group_by_info) <- colnames(sce)
    } else {
        group_by_info <- NULL
    }



    return(group_by_info)
}

#' @importFrom SummarizedExperiment colData

.extract_facet_by <- function(sce, facet_by) {
    if (!is.null(facet_by)) {
        if (!facet_by %in% colnames(SummarizedExperiment::colData(sce))) {
            stop("group_by is not a column name of sce's colData")
        }

        facet_by_info <- as.factor(colData(sce)[, facet_by])
        names(facet_by_info) <- colnames(sce)
    } else {
        facet_by_info <- NULL
    }
    return(facet_by_info)
}

.extract_filter_features <- function(exprsMat, feature_subset, n) {

    if (is.null(feature_subset)) {
        if (is.null(n)) {
            n <- min(nrow(exprsMat), 10)
        }
        rowmeans <- apply(exprsMat, 1, median)
        rowmeans <- sort(rowmeans, decreasing = TRUE)
        feature_subset <- rev(names(rowmeans)[seq_len(n)])
    } else {
        if (sum(!feature_subset %in% rownames(exprsMat)) != 0) {
            stop("sce does not contain some or
                 all of feature_subset as features")
        }
    }

    exprsMat <- as.matrix(exprsMat[feature_subset, , drop = FALSE])
    return(exprsMat)
}

Try the CiteFuse package in your browser

Any scripts or data that you put into this service are public.

CiteFuse documentation built on April 14, 2021, 6 p.m.