R/wga_stat.R

Defines functions her2.log myrmvnorm getOR.CI getExtremeSubs getGenoStats dsgnMat standardize.z freqCounts.var heterTest swap2cols.cov GC.adj.pvalues inflationFactor unadjustedGLM.counts pvalue.normal getCI getORfromLOR getLinearComb.var snp.effects effects.init getDesignMatrix getModelData getXBeta getGenoCounts callGLM getPermutation getPermutation.strata setUpSummary getSummary getSummary.main getMAF score.logReg rank.trunc.prod threshold.trunc.prod getWaldTest waldTest.main likelihoodRatio loglikeAndRank likelihoodRatio.main getLoglike.glm getEstCov

Documented in getSummary getWaldTest snp.effects

# History: May 02 2008 Add getWaldTest
#          May 14 2008 Make getWald test more general
#          May 30 2008 Add getMAF function
#          Jun 03 2008 Use matchNames function in getWaldTest.
#          Jun 04 2008 Add getSummary function
#          Jun 10 2008 Add setUpSummary function
#          Jun 16 2008 Rename getLoglike to getLoglike.glm
#          Jun 18 2008 Redo getWaldTest
#          Jun 30 2008 Let getWaldTest call setUpSummary
#          Jul 11 2008 Add getPermutation function
#          Jul 15 2008 In getWaldTest, use the try function
#          Jul 17 2008 Add getGenoCounts
#          Jul 18 2008 Remove missing names from getWaldTest
#                      Remove inc.Beta.se option
#          Jul 21 2008 Generalize likelihood ratio to lists
#                      Add getXBeta function
#          Jul 25 2008 Add getDesignMatrix function
#          Aug 05 2008 Add effects functions
#          Aug 08 2008 Compute standard errors for effects
#                      Add getLinearComb.var
#          Aug 12 2008 Change getDesignMatrix
#          Aug 13 2008 Add getModelData
#          Aug 13 2008 Use getModelData in callGLM
#          Aug 14 2008 Change to getPermutation function
#          Aug 21 2008 Change to effects.init function
#          Aug 25 2008 Add effects function
#          Aug 29 2008 Add waldTest.main
#          Aug 29 2008 Add getSummary.main
#          Sep 29 2008 Add getORfromLOR and getCI
#          Oct 01 2008 Fix bug in computing LR p-value
#          Oct 22 2008 Fix bug in getDesignMatrix
#          Oct 23 2008 Add pvalue.normal function
#          Nov 18 2008 Add unadjustedGLM.counts
#          Dec 05 2008 Catch errors in unadjustedGLM.counts
#          Jan 15 2009 Add GC.adj.pvalues and inflationFactor functions
#          Feb 03 2009 Change in getMAF
#          Mar 26 2009 Add swap2cols.cov function
#          Apr 04 2009 Fix bug in getDesignMatrix
#          Apr 27 2009 Modify effects.init return list
#          Apr 28 2009 Change in effects.init for the first row of a
#                      stratified effects table.
#          Jun 04 2009 Add heterTest function
#          Jun 12 2009 Add freqCounts.var function
#                      Add standardize.z function
#          Jun 19 2009 Fix bug in getDesignMatrix for interaction
#                      matrices of 1 column, and setting the colnames
#          Jul 15 2009 Add inflation factor argument to GC.Adj.Pvalues function
#          Jul 20 2009 Update freqCounts.var for left endpoint = right endpoint
#          Jul 28 2009 Update freqCounts.var for left endpoint = right endpoint
#          Jul 30 2009 Update freqCounts.var to include data frame
#          Aug 03 2009 Change output of effects.init
#          Oct 06 2009 Change levels in freqCounts.var for leftEndClosed
#          Oct 09 2009 Update freqCounts.var to pass in labels
#          Oct 23 2009 Add function to check the convergence of an object
#          Oct 26 2009 Add functions for likelihood ratio test, Wald test
#          Oct 28 2009 Add function dsgnMat
#          Dec 28 2009 Let a colon be the seperator in snp.effects for the interaction
#          Dec 29 2009 Add option removeInt to dsgnMat
#          Mar 03 2010 Update getWaldTest, getEstCov for snp.matched class
#          Mar 03 2010 Update snp.effects for the snp.matched class
#          Mar 13 2010 Add method option to getSummary, getWaldTest
#                      Compute stratified effects in snp.effects
#                      Add function to print snp.effects object
#          Mar 15 2010 Add method option to snp.effects
#          Mar 18 2010 Add function getGenoStats
#          Aug 18 2010 Add base1.name option to effects.init
#          Sep 23 2010 Update inflationFactor function
#          Oct 12 2010 Update waldTest.main 
#          Nov 09 2010 Update waldTest.main to return NA if chisq test < 0
#          Nov 29 2010 Add option to getXBeta
#                      Add getExtremeSubs function
#          Dec 23 2010 Add getOR.CI function
#          Jan 12 2011 Remove extended option in getDesingMatrix
#          Nov 01 2011 Add getPermutation.strata function
#          Feb 22 2012 Add myrmvnorm function
#          Feb 07 2013 Add function her2.log for heritability

# Function to return point estimates and covariance matrix from an object
getEstCov <- function(fit) {

  clss <- class(fit)
  if (any(clss == "snp.logistic")) {
    methods <- c("UML", "CML", "EB")
    ret <- list(methods=methods)
    for (method in methods) {
      temp <- fit[[method, exact=TRUE]]
      if (!is.null(temp)) {
        ret[[method]] <- list(estimates=temp$parms, cov=temp$cov)
      } 
    }
    return(ret)
  } else if (any(clss == "glm")) {
    parms <- fit$coefficients
    fit   <- summary(fit)
    cov   <- fit$cov.scaled
  } else if (any(clss == "coxph")) {
    parms         <- fit$coefficients
    cov           <- fit$var
    vnames        <- names(parms)
    rownames(cov) <- vnames
    colnames(cov) <- vnames
  } else if (any(clss == "vglm")) {
    parms <- fit@coefficients
    fit   <- summary(fit)
    cov   <- fit@cov.unscaled
  } else if (any(clss == "snp.matched")) {
    methods <- c("CLR", "CCL", "HCL")
    ret <- list(methods=methods)
    for (method in methods) {
      temp <- fit[[method, exact=TRUE]]
      if (!is.null(temp)) {
        ret[[method]] <- list(estimates=temp$parms, cov=temp$cov)
      } 
    }
    return(ret)
  } else {
    parms <- fit$parms
    if (is.null(parms)) parms <- fit$coefficients 
    cov <- fit$cov
    if (is.null(cov)) cov <- fit$cov.scaled 
  }

  list(estimates=parms, cov=cov)

} # END: getEstCov

# Function to get the log-likelihood from a glm object
getLoglike.glm <- function(model) {
  # model

  # AIC = -2*loglike + 2*(# of parms)
  (2*model$rank - model$aic)/2 

} # END: getLoglike.glm

# Main function for likelihood ratio test
likelihoodRatio.main <- function(ll1, rank1, ll2, rank2) {

  # ll1, ll2   log-likelihood values

  df     <- abs(rank1 - rank2)
  test   <- 2*abs(ll1 - ll2)
  if (!df) {
    pvalue <- 1
  } else {
    pvalue <- pchisq(test, df, lower.tail=FALSE)
  }
  list(test=test, df=df, pvalue=pvalue)

} # END: likelihoodRatio.main

# Function to return the log-likelihood and rank of an object
loglikeAndRank <- function(fit) {

  clss <- class(fit)
  if (any(clss == "glm")) {
    rank <- fit$rank
    ll   <- (2*rank - fit$aic)/2
  } else if (any(clss == "coxph")) {
    rank <- sum(!is.na(fit$coefficients))
    ll   <- max(fit$loglik)
  } else if (any(clss == "vglm")) {
    rank <- fit@rank
    ll   <- fit@criterion$loglikelihood
  } else {
    rank <- fit$rank
    ll   <- fit$loglike
  } 

  list(loglike=ll, rank=rank)

} # END: loglikeAndRank

# Function to do a likelihood ratio test
likelihoodRatio <- function(model1, model2) {
  # model1    Return object from glm, lm, snp.logistic, coxph, vglm or list
  #           with names "loglike" and "rank"
  # model2

  l1 <- loglikeAndRank(model1)
  l2 <- loglikeAndRank(model2)

  ret <- likelihoodRatio.main(l1$loglike, l1$rank, l2$loglike, l2$rank) 

  ret

} # END: likelihoodRatio

# Function to compute the Wald test (2 - sided) 
waldTest.main <- function(parms, cov, parmNames) {

  # parms      Parameter vector
  # cov        Covariance matrix
  # parmNames  Character or numeric vector of parameters to test

  df     <- length(parmNames)
  nrcov  <- nrow(cov)
  vnames <- names(parms)

  if (is.numeric(parmNames)) {
    temp <- parmNames %in% 1:nrcov
    vpos <- parmNames[temp]
    np   <- length(vpos)
    if (!np) return(list(test=NA, df=0, pvalue=NA))

    # Update parms and cov
    parms <- parms[vpos]
    cov   <- cov[vpos, vpos] 

  } else {
    # Remove missing names in parmNames
    vnames <- vnames[vnames %in% parmNames]
     
    # Update the parameter vector (the name is kept if length(vnames) = 1)
    parms <- parms[vnames]

    # Remove missing values
    temp   <- !is.na(parms)
    parms  <- parms[temp]
    vnames <- vnames[temp]

    # Check for error
    np <- length(parms)
    if (!np) return(list(test=NA, df=0, pvalue=NA))
    
    # Update cov
    cov <- cov[vnames, vnames]
  }

  if (np == 1) {
    test   <- parms/sqrt(cov)
    pvalue <- 2*pnorm(abs(test), lower.tail=FALSE) 
    return(list(test=test, df=np, pvalue=pvalue))
  } 

  # See if matrix is invertible
  temp <- try(solve(cov), silent=TRUE)
  if (class(temp) == "try-error") {
    return(list(test=NA, df=np, pvalue=NA))
  } 

  # Get the test statistic
  dim(parms) <- c(np, 1)
  test       <- t(parms) %*% temp %*% parms
  dim(test)  <- NULL
  if (test >= 0) {
    pvalue   <- pchisq(test, df=np, lower.tail=FALSE) 
  } else {
    pvalue   <- NA
  }

  list(test=test, df=np, pvalue=pvalue)

} # END: waldTest.main

# Function to compute the Wald test (2 - sided)
getWaldTest <- function(fit, parmNames, method=NULL) {

  # fit        Return object from glm, list with names "coefficients"
  #            and "cov.scaled", return object from snp.logistic or snp.matched.
  # parmNames  Character or numeric vector of parameters to test
  # method     

  estcov <- getEstCov(fit)
  methods <- estcov[["methods", exact=TRUE]]
  if (!is.null(methods)) {
    ret <- list()
    for (m in methods) {
      temp <- estcov[[m, exact=TRUE]]
      if (!is.null(temp)) ret[[m]] <- waldTest.main(temp$estimates, temp$cov, parmNames)
    } 
    if (!is.null(method)) ret <- ret[[method, exact=TRUE]]
    return(ret)
  } 

  return(waldTest.main(estcov$estimates, estcov$cov, parmNames))    
  
} # END: getWaldTest

# Function to compute the threshold p-value
threshold.trunc.prod <- function(pvals, threshold=0.05) {

  # pvals      Vector or matrix of p-values   
  # threshold  The default is 0.05

  dim(pvals) <- NULL

  # Get the pvalues less than threshold
  pvals <- pvals[((pvals < threshold) & (!is.na(pvals)))]

  ret <- exp(sum(log(pvals)))

  ret

} # END: rankTruncate.pvals

# Function to compute rank truncated p-value
rank.trunc.prod <- function(pvals, k=10) {

  # pvals   Vector or matrix of p-values   
  # k       Maximum number of p-values to use

  # Get the sorted p-values
  pvals <- sort(pvals)
  n     <- min(length(pvals), k)
  ret   <- exp(sum(log(pvals[1:n])))

  ret

} # END: rankTruncate.pvals

# Function to compute score test for logistic reg
score.logReg <- function(fit, mat) {

  # fit      Return object from glm with x=TRUE and y=TRUE in the call
  # mat      A single factor, matrix, or data frame of variables to test

  # See if mat is a factor
  if (is.factor(mat)) mat <- data.frame(mat)
  if (is.data.frame(mat)) {
    mat <- as.matrix(createDummy(mat)$data)
  }

  # Get the number of columns of mat
  df <- ncol(mat)
  if (is.null(df)) df <- 1

  temp <- exp(fit$linear.predictors)
  p    <- temp/(1 + temp)  

  # Add the new vector to x
  x  <- cbind(fit$x, mat)
  
  # Get the gradient
  U      <- colSums(matrixMultVec(x, fit$y-p, by=2)) 
  n      <- length(U)
  dim(U) <- c(n, 1)

  # Free memory
  rm(fit, mat)
  temp <- gc(verbose=FALSE)

  # Let p = p*(1-p)
  p <- p*(1 - p)

  # Get the negative Hessian
  hess <- matrix(data=NA, nrow=n, ncol=n)
  for (i in 1:n) {
    temp      <- p*x[, i]
    hess[i, ] <- colSums(matrixMultVec(x, temp, by=2)) 
    hess[, i] <- hess[i, ]
  }

  # Invert the hessian
  hess <- try(solve(hess), silent=TRUE)
  if (class(hess) == "try-error") {
    warning("Singular hessian matrix")
    return(list(test=NA, df=df, pvalue=NA))
  } 

  # Compute the chi-squared test statistic
  test <- t(U) %*% hess %*% U
  dim(test) <- NULL

  pvalue <- pchisq(test, df=df, lower.tail=FALSE)

  list(test=test, df=df, pvalue=pvalue)

} # score.logReg

# Function to compute minor allele frequency
getMAF <- function(genotype, sub.vec=NULL, controls=0) {

  # genotype       Vector of genotypes coded as 0, 1, 2, NA
  #                No default
  # sub.vec        NULL or case/control vector for only using
  #                a subset of the genotypes.
  #                The default is NULL
  # controls       Vector of values describing the controls in 
  #                sub.vec.
  #                The default is 0.

  temp <- !is.na(genotype)
  if (!is.null(sub.vec)) temp <- temp & (sub.vec %in% controls)
  genotype <- genotype[temp]
  ng <- length(genotype)
  if (!ng) return(NA)

  freq <- (sum(genotype==1) + 2*sum(genotype==2))/(2*ng)
  freq

} # END: getMAF 

# Function to return summary information for parameters
getSummary.main <- function(parms, cov, sided=2) {

  # parms   Vector of parameters
  # cov     Covariance matrix 
  # sided   1 or 2 

  if (sided != 1) sided <- 2
  cols <- c("Estimate", "Std.Error", "Z.value", "Pvalue")

  n    <- length(parms)
  ret  <- matrix(data=NA, nrow=n, ncol=4)
  pnames <- names(parms)
  rownames(ret) <- pnames
  colnames(ret) <- cols
  ret[, 1] <- parms
  
  cols <- colnames(cov)
  cov  <- sqrt(diag(cov))
  names(cov) <- cols
  
  # Get the correct order
  if (is.null(pnames)) pnames <- 1:n
  cov <- cov[pnames]
  ret[, 2] <- cov

  ret[, 3] <- parms/cov 
  ret[, 4] <- sided*pnorm(abs(ret[, 3]), lower.tail=FALSE)
  ret

} # END: getSummary.main

# Function to return summary information for parameters
getSummary <- function(fit, sided=2, method=NULL) {

  # fit     Return object from glm, snp.logistic, or a list
  #         with names "parms" and "cov".
  # sided   1 or 2 

  clss <- class(fit)

  # snp.logistic
  if (any(clss %in% "snp.logistic")) {
    if (is.null(method)) {
      methods <- c("UML", "CML", "EB")
    } else {
      methods <- toupper(method)
    }
    ret <- list()
    for (m in methods) {
      temp <- fit[[m, exact=TRUE]]
      if (!is.null(temp)) {
        ret[[m]] <- getSummary.main(temp$parms, temp$cov, sided=sided)
      } 
    }
    return(ret)
  } 

  # snp.matched
  if (any(clss %in% "snp.matched")) {
    if (is.null(method)) {
      methods <- c("CLR", "CCL", "HCL")
    } else {
      methods <- toupper(method)
    }
    ret <- list()
    for (m in methods) {
      temp <- fit[[m, exact=TRUE]]
      if (!is.null(temp)) {
        ret[[m]] <- getSummary.main(temp$parms, temp$cov, sided=sided)
      } 
    }
    return(ret)
  } 

  # GLM
  if ("glm" %in% clss) fit <- summary(fit)
  if (class(fit) == "summary.glm") {
    cols <- c("Estimate", "Std.Error", "Z.value", "Pvalue")
    if (sided != 1) sided <- 2

    fit$coefficients[, 4] <- 
       sided*pnorm(abs(fit$coefficients[, 3]), lower.tail=FALSE)
    colnames(fit$coefficients) <- cols
    return(fit$coefficients)
  }

  # List
  parms <- fit$parms
  if (is.null(parms)) {
    parms <- fit$coefficients
    if (is.null(parms)) return(NULL)
  }
  cov <- fit$cov
  if (is.null(cov)) {
    cov <- fit$cov.scaled
    if (is.null(cov)) return(NULL)
  }
  return(getSummary.main(parms, cov, sided=sided))      

} # END: getSummary

# Function to take a parameter vector and covariance matrix and
#  output an nx2 matrix that can be used with getWaldTest
setUpSummary <- function(parms, cov) {

  cnames         <- colnames(cov)
  nc             <- ncol(cov)
  if (is.null(nc)) nc <- 1
  temp           <- matrix(data=NA, nrow=nc, ncol=2)
  colnames(temp) <- c("Estimate", "Std. Error")
  rownames(temp) <- cnames
  temp[, 2]      <- sqrt(diag(cov))
 
  # Match the parameter names (there could be NAs in the vector of
  #   point estimates)
  if ((!is.null(cnames)) && (!is.null(names(parms)))) {
    parms <- parms[cnames]
  }
  temp[, 1] <- parms
 
  temp <- list(coefficients=temp, cov.scaled=cov)
  temp
 
} # END: setUpSummary

# Function to call for permutations with a stratification variable
getPermutation.strata <- function(vec, start=NULL, stop=NULL) {

  # vec           Vector of the strata variable (example family ids)
  #               This vector MUST be sorted
  # start         Starting indices for each unique value of vec
  # stop          Stopping indices for each unique value of vec

  if ((is.null(start)) || (is.null(stop))) {
    levels  <- table(vec)
    nlevels <- length(levels)
    start   <- integer(nlevels)
    stop    <- integer(nlevels)
    a       <- 1
    for (i in 1:nlevels) {
      start[i] <- a
      b        <- a + levels[i] - 1
      stop[i]  <- b
      a        <- b + 1 
    } 
  } else {
    nlevels <- length(start)
  }

  ret <- integer(length(vec))
  for (i in 1:nlevels) {
    ids <- start[i]:stop[i]
    ret[ids] <- sample(ids, replace=FALSE)
  }

  list(perm=ret, nlevels=nlevels, start=start, stop=stop)

} # END: getPermutation.strata

# Function to call for permutations
getPermutation <- function(fit0, nsub, perm.method=1) {

  # fit0           Base model fit
  # nsub
  # perm.method    1-3

  if (perm.method == 3) {
    # For gaussian family
    # Permute the residuals
    errors <- sample(fit0$residuals)

    # Add to linear predictor
    response <- fit0$linear.predictors + errors

    perm <- 1:nsub
  } else if (perm.method == 2) {
    # For binomial family
    perm     <- 1:nsub
    response <- rbinom(nsub, 1, fit0$fitted.values)    
  } else {
    perm     <- sample(1:nsub)
    response <- fit0$y
  }

  list(response=response, perm=perm)

} # END: getPermutation

# Function to call glm
callGLM <- function(y, X.main=NULL, X.int=NULL, int.vec=NULL,
                    family="binomial", prefix="SNP_", retX=TRUE,
                    retY=TRUE, inc.int.vec=1, int.vec.base=0) {

  # y           Response vector
  # X.main      Matrix of main effects (without intercept and int.vec)
  # X.int       Matrix for interactions
  # int.vec     Interaction vector or factor 
  # family
  # inc.int.vec 0 or 1 to include the interacting vector in the model

  temp <- getModelData(y, int.vec, X.main=X.main, X.int=X.int, 
                    prefix=prefix, inc.snp=inc.int.vec, 
                   snp.base=int.vec.base)

  y <- temp$y
  X <- temp$design

  if (is.null(prefix)) {
    fit <- glm(y ~ X-1, family=family,
            model=FALSE, x=retX, y=retY) 
  } else {
    fit <- glm(y ~ .-1, family=family, data=data.frame(X),
            model=FALSE, x=retX, y=retY)
  }

  fit

} # END: callGLM

# Function to return genotype counts
getGenoCounts <- function(snp, exclude=c(NA, NaN), check=1) {

  ret <- table(snp, exclude=exclude)
  if ((check) && (length(ret) < 3)) {
    temp        <- rep.int(0, times=3)
    names(temp) <- c("0", "1", "2")
    nm          <- names(ret)
    temp[nm]    <- ret
    ret         <- temp
  }
  ret

} # END: getGenoCounts

# Function to compute XBeta (linear.predictors) by matching the names
getXBeta <- function(X, beta, drop=NULL) {

  X <- as.matrix(X)
  
  if (!is.null(drop)) {
    temp <- !(names(beta) %in% drop)
    beta <- beta[temp]
  }
  cnames  <- intersect(colnames(X), names(beta))
  print("Variables used:")
  print(cnames)
  X       <- removeOrKeepCols(X, cnames, which=1)
  if (!is.numeric(X)) {
    dimX   <- dim(X)
    temp   <- colnames(X)
    X      <- as.numeric(X)
    dim(X) <- dimX
    colnames(X) <- temp
  }

  beta    <- beta[cnames]
  b2      <- beta
  dim(b2) <- c(length(beta), 1)
  ret     <- X %*% b2
  list(X=X, beta=beta, XBeta=ret)

} # END: getXBeta

# Function to return the model data for callGLM
getModelData <- function(y, snp, X.main=NULL, X.int=NULL, 
                    prefix=NULL, inc.snp=1, snp.base=0) {

  pflag <- !is.null(prefix)
  if (pflag) cnames <- colnames(X.main)

  # Append y and intercept to X.main
  X.main <- cbind(y, 1, X.main)
  if (pflag) colnames(X.main) <- c("y", "Intercept", cnames)

  mat <- getDesignMatrix(snp, X.main=X.main, X.int=X.int,
                   inc.snp=inc.snp, X.hasInt=1, prefix=prefix,
                   snp.base=snp.base)
 
  # Remove the response from mat
  y   <- mat[, 1]
  mat <- removeOrKeepCols(mat, 1, which=-1) 
  
  list(y=y, design=mat)

} # END: getModelData

# Function to return a design matrix.
# Missing values are automatically removed
getDesignMatrix <- function(snp, X.main=NULL, X.int=NULL,
                   inc.snp=1, X.hasInt=0, prefix=NULL,
                   snp.base=0) {
  
  # snp         Vector or factor. If a factor, see snp.base
  # X.main      Matrix for main effects
  # X.int       Matrix for interactions with snp
  # inc.snp     0 or 1 to include snp in the model
  # X.hasInt    0 or 1 if X.main has an intercept column
  # prefix      NULL or snp prefix for variable names
  #             If set to NULL, the default variable names
  #             from model.matrix will be kept.
  # snp.base    Baseline category for snp that will be left
  #             out of the returned matrix

  # Input matrices should have column names !!!
  # If column names for X.int contain a colon, then there will be a problem
  # Watch for X.main = NULL

  intFlag <- !is.null(X.int)
  if (intFlag) {
    intNames   <- colnames(X.int)
    intIds     <- grep(":", intNames)
    intIdsFlag <- length(intIds)
    if (intIdsFlag) {
      stop("ERROR: X.int column names cannot contain a colon (:)")
      intNames <- gsub(":", ".", intNames)
      colnames(X.int) <- intNames
    } 
  }
  pFlag   <- !is.null(prefix)
  snpFlag <- !is.null(snp)
  if (snpFlag) {
    facFlag <- is.factor(snp)
  } else {
    facFlag <- 0
  } 
  if (!snpFlag) {
    inc.snp <- 0
    intFlag <- 0
  }
 
  # An intercept will always be included
  if (!X.hasInt) X.main <- cbind(rep(1, times=length(snp)), X.main)

  if (intFlag) {
    #colnames(X.int) <- NULL
    mat <- model.matrix(~X.main + snp*X.int - 1 - X.int)
  } else {
    if (snpFlag) {
      mat <- model.matrix(~X.main + snp - 1)
    } else {
      mat <- model.matrix(~X.main - 1)
    }
  }

  # Set the column names
  if (pFlag) {
    assign <- attributes(mat)$assign
    max    <- max(assign)
    cnames <- colnames(mat)

    # Main effects
    ids  <- assign == 1
    temp <- cnames[ids]
    # Start from pos 7 (X.main is 6 chars)
    cnames[ids] <- substring(temp, 7)

    # Intercept column
    cnames[1] <- "Intercept"

    # SNP
    if (max > 1) {
      ids  <- assign == 2
      temp <- cnames[ids]
      # Start from pos 4 (snp is 3 chars)
      cnames[ids] <- paste(prefix, substring(temp, 4), sep="")

      # Interactions
        if (max > 2) {
          if (facFlag) {
            string <- "_"
          } else {
            string <- ""
          }

          ids  <- assign == 3
          temp <- cnames[ids]
          nint <- length(intNames)

          # Remove the string "snp"
          temp <- substring(temp, 4)
          temp <- unlist(strsplit(temp, ":", fixed=TRUE))
          n    <- length(temp)
  
          # temp is a character vector, every 2 consecutive elements
          # was from the same list  
          even <- seq(from=2, to=n, by=2)
          temp[even] <- substring(temp[even], 6)
          odd <- seq(from=1, to=n-1, by=2)
          temp[odd] <- paste(prefix, temp[odd], sep="")        
          if (nint == 1) {
            temp[even] <- intNames
          } 
          cnames[ids] <- paste(temp[odd], string, temp[even], sep="")

        } # END: if (max > 2)

    } # END: if (max > 1)

    colnames(mat) <- cnames

  } # END: if (pFlag)

  # Remove columns if needed
  if (inc.snp) {
    if (facFlag) {

      # Make sure baseline column is not in the model
      if (pFlag) {
        var <- paste(prefix, snp.base, sep="")
        if (intFlag) {
          var <- c(var, paste(prefix, snp.base, "_", intNames, sep=""))
        }
      } else {
        var <- paste("snp", snp.base, sep="")
        if (intFlag) {
          var <- c(var, paste(var, ":X.int", intNames, sep=""))
        }
      }
      temp <- var %in% colnames(mat)
      if (any(temp)) mat <- removeOrKeepCols(mat, var[temp], which=-1)
    }
  } else {
    # Get the snp column numbers
    ids      <- attributes(mat)$assign == 2
    if (any(ids)) {
      snp.cols <- (1:length(ids))[ids]
      mat <- removeOrKeepCols(mat, snp.cols, which=-1)
    } 
  }

  mat

} # END: getDesignMatrix

# Function to compute an effects table and standard errors
effects.init <- function(parms, cov, var1, var2, levels1, levels2, 
                     base1=0, base2=0, int.var=NULL, effects=1,
                     sep1="_", base2.name="baseline", base1.name="baseline") {

  # parms       Vector of parameter estimates
  # var1        Vector of parameter names for one of the variables. If the
  #             length of this vector is > 1, then it is assumed that var1
  #             is a categorical variable.
  # var2        
  # levels1     Levels for var1 (snp)
  # levels2     Levels for var2 Can be NULL for a categorical variable
  # base1
  # base2
  # int.var     For no interaction, set to NULL. Otherwise a var1 x var2 
  #             matrix of interaction parameter names. int.var can also
  #             be a vector if length(var1) = 1 or length(var2) = 1.
  #             The order of this matrix must match the order of var1 and
  #             var2.
  #             The default is NULL.
  # effects     1 or 2  1 = joint, 2 = stratified
  # sep1        String to separate var1 with its levels
  #             The default is "_".

  int.flag <- !is.null(int.var)
  nv1      <- length(var1)
  nv2      <- length(var2)
  contv1   <- nv1 == 1  
  contv2   <- nv2 == 1
  joint    <- effects == 1

  # Check the number of interaction variables
  if (int.flag) {
    if (length(int.var) != nv1*nv2) {
      stop("ERROR with int.var")
    }
  }

  # Get the levels of the continuous variables, otherwise we assume
  #  the values are 0-1. 
  if (contv1) {
    nlev1   <- length(levels1)
    p1      <- rep(parms[var1], times=nlev1)
    names1  <- paste(var1, levels1, sep=sep1)
    v1      <- rep(var1, times=nlev1)
  } else {
    levels1 <- c(0, rep.int(1, times=nv1))
    nlev1   <- length(levels1)
    p1      <- c(0, parms[var1])
    base1   <- 0
    names1  <- c(base1.name, var1)
    v1      <- c(var1[1], var1)
  }
  if (contv2) {
    nlev2   <- length(levels2)
    p2      <- rep(parms[var2], times=nlev2)
    names2  <- paste(var2, levels2, sep="_")
    v2      <- rep(var2, times=nlev2)
  } else {
    levels2 <- c(0, rep.int(1, times=nv2))
    nlev2   <- length(levels2)
    p2      <- c(0, parms[var2])
    base2   <- 0
    names2  <- c(base2.name, var2) 
    v2      <- c(var2[1], var2)
  }

  # Initialize the matrix of interaction parms
  pint <- matrix(data=0, nrow=nlev1, ncol=nlev2)

  # Get the interaction parm
  if (int.flag) {
    # Remove dimension of int.var if <= 1 categorical var
    if (sum(contv1 + contv2) != 0) dim(int.var) <- NULL 

    if (contv1 && contv2) {
      pint[,] <- parms[int.var]
      int.var <- matrix(data=int.var, nrow=nlev1, ncol=nlev2)
    } else {
      if (!contv1 && contv2) {
        temp <- c(0, parms[int.var])
        for (i in 1:nlev2) pint[, i] <- temp
        int.var <- rep(c(int.var[1], int.var), times=nlev2)
        dim(int.var) <- c(nlev1, nlev2)
      } else if (contv1 && !contv2) {
        temp <- c(0, parms[int.var])
        for (i in 1:nlev1) pint[i, ] <- temp
        int.var <- rep(c(int.var[1], int.var), each=nlev1)
        dim(int.var) <- c(nlev1, nlev2)
      } else {
        # Both are categorical
        pint[1, ] <- 0
        for (i in 2:nlev1) {
          pint[i, ] <- c(0, parms[int.var[i-1,]])
        }
       
        # Add baselines to int.var
        temp <- int.var
        int.var <- matrix(data="", nrow=nlev1, ncol=nlev2)
        int.var[2:nlev1, 2:nlev2] <- temp

        # We can assign anything to these 
        int.var[, 1] <- temp[1,1]
        int.var[1, ] <- temp[1,1]
      }
    }
  } 

  # Get the baseline value(s)
  if (joint) {
    base <- base1*p1[1] + base2*p2[1] + base1*base2*pint[1, 1]
    base <- exp(base)
    base <- rep(base, times=nlev2)
  } else {
    base <- rep(NA, times=nlev2)
    for (j in 1:nlev2) {
      temp <- base1*p1[1] + levels2[j]*p2[j] + base1*levels2[j]*pint[1, j]
      base[j] <- exp(temp) 
    }
  }

  # Initialize matrix of effects 
  eff <- matrix(data=NA, nrow=nlev1, ncol=nlev2)
  colnames(eff) <- names2
  rownames(eff) <- names1
  # Loop over the levels
  for (i in 1:nlev1) {
    for (j in 1:nlev2) {
      temp <- levels1[i]*p1[i] + levels2[j]*p2[j] + 
              levels1[i]*levels2[j]*pint[i, j]
      temp <- exp(temp)
      #if ((joint) || (levels1[i] != base1)) temp <- temp/base[j]    
      #eff[i, j] <- temp
      eff[i, j] <- temp/base[j]
    }
  }

  # Initialize matrix for standard errors
  se <- matrix(data=NA, nrow=nlev1, ncol=nlev2)
  colnames(se) <- names2
  rownames(se) <- names1

  # Get base levels
  sebase1 <- rep(base1, times=nlev1)
  if (joint) {
    sebase2 <- rep(base2, times=nlev2)
  } else {
    sebase2 <- levels2
  }

  # Loop over the levels
  for (i in 1:nlev1) {
    for (j in 1:nlev2) {
      b1 <- sebase1[i]
      b2 <- sebase2[j]

      # Get vector of variables and coefficients
      vars <- c(v1[i], v2[j])
      coef <- c(levels1[i] - b1, levels2[j] - b2)

      if (int.flag) {
        vars <- c(vars, int.var[i, j])
        coef <- c(coef, levels1[i]*levels2[j] - b1*b2)
      }

      # SE
      se[i, j] <- sqrt(getLinearComb.var(vars, cov, coef=coef))
    }
  }
 
  logEffects <- log(eff)
  lower95    <- exp(logEffects - 1.96*se)
  upper95    <- exp(logEffects + 1.96*se)  

  list(effects=eff, lower95=lower95, upper95=upper95, 
       logEffects=logEffects, logEffects.se=se)

} # END: effects.init

# Function to compute an effects table and standard errors from
#  the snp.logistic output
snp.effects <- function(fit, var, var.levels=c(0,1), method=NULL) {

  # fit      Output from snp.logistic or snp.matched
  # var      Name of variable to get effects with snp
  # var.levels   (For continuous var) First level is assumed to be
  #          the baseline level 
  #          The default is NULL.

  if (length(var) != 1) stop("Only 1 variable can be specified")

  # Determine the input object
  temp <- class(fit)
  if (temp == "snp.logistic") {
    which   <- 1
    snp     <- fit$model.info$snpName
    methods <- c("UML", "CML", "EB")
    cnames  <- colnames(fit$UML$cov)
    if (is.null(fit$UML)) return(NULL)
  } else if (temp == "snp.matched") {
    which   <- 2
    snp     <- fit$model.info$snp.vars
    methods <- c("CLR", "CCL", "HCL")
    for (m in methods) {
      temp <- fit[[m, exact=TRUE]]
      if (!is.null(temp)) {
        cnames <- colnames(temp$cov)
        break
      }
    }
  } else {
    stop("fit must be of class snp.logistic or snp.matched")
  }

  if (!is.null(method)) {
    temp <- methods %in% method
    methods <- methods[temp]
    if (!length(methods)) stop("Incorrect method")
  }

  levels <- var.levels
  sep1   <- "_"
  nsnp   <- length(snp)

  if (!(var %in% fit$model.info$main.vars)) {
    stop("var must be a main effect variable")
  }
  
  if (var %in% fit$model.info$factors) {
    
    facFlag    <- 1
    levels     <- levels(fit$model.info$data[, var])
    temp2      <- paste(var, "_", levels, sep="") 
  
    # Get the variables in the model fit
    temp       <- temp2 %in% cnames
    var2       <- temp2[temp]
    base2.name <- temp2[!temp] 
    temp       <- length(base2.name)
    if (!temp) base2.name <- "baseline"
    if (temp > 1) base2.name <- base2.name[1]
  } else {
    facFlag    <- 0
    var2       <- var
    base2.name <- NULL
  }

  levels1 <- 0:2
  if (is.null(levels)) {
    if (is.factor(fit$model.info$data[, var])) {
      base2 <- 0
    } else {
      stop("levels must be specified for a continuous var")
    }
  } else {
    base2 <- levels[1]
  }
  
  # Initialize the return list
  ret   <- list()

  intFlag <- 0
  int.var <- NULL
  if (var %in% fit$model.info$int.vars) intFlag <- 1

  for (var1 in snp) {
    if (intFlag) int.var <- paste(var1, ":", var2, sep="")
  
    for (method in methods) {
      temp2 <- fit[[method]]
      if (is.null(temp2)) next
      tlist <- list()
      eff1 <- effects.init(temp2$parms, temp2$cov, var1, var2, 
                 levels1, levels, base1=0, base2=base2,
                 int.var=int.var, effects=1, sep1=sep1,
                 base2.name=base2.name)
      eff2 <- effects.init(temp2$parms, temp2$cov, var1, var2, 
                 levels1, levels, base1=0, base2=base2,
                 int.var=int.var, effects=2, sep1=sep1,
                 base2.name=base2.name)
      eff3 <- effects.init(temp2$parms, temp2$cov, var2, var1, 
                 levels, levels1, base1=base2, base2=0,
                 int.var=int.var, effects=2, sep1=sep1,
                 base2.name="0")

      # Set attributes  
      attr(eff1, "var1")    <- var1 
      attr(eff1, "var2")    <- var2 
      attr(eff1, "levels1") <- levels1 
      attr(eff1, "levels2") <- levels 
      attr(eff2, "var1")    <- var1
      attr(eff2, "var2")    <- var2
      attr(eff2, "levels1") <- levels1
      attr(eff2, "levels2") <- levels
      attr(eff3, "var1")    <- var2
      attr(eff3, "var2")    <- var1
      attr(eff3, "levels1") <- levels
      attr(eff3, "levels2") <- levels1

      temp <- list(JointEffects=eff1, StratEffects=eff2, StratEffects.2=eff3)
      #temp <- list(JointEffects=eff1, StratEffects=eff2)

      class(temp) <- "snp.effects.method" 

      if (nsnp == 1) {
        ret[[method]] <- temp
      } else {
        tlist[[method]] <- temp
      }      
    }
    if (nsnp != 1) ret[[var1]] <- tlist
  }
  class(ret) <- "snp.effects"

  ret

} # END: snp.effects

# Function to compute the variance of a linear combination of parms
getLinearComb.var <- function(vars, cov, coef=NULL) {

  # vars       Vector variable names or indices in cov
  # cov        Covariance matrix 
  # coef       Coefficients for vars. The order must be the same
  #            The default is all coefficients are 1
 
  n <- length(vars)
  if (is.null(coef)) coef <- rep(1, times=n)
  if (n != length(coef)) stop("ERROR with parms and/or coef")

  sum <- 0
  # Sum up the variances
  for (i in 1:n) {
    sum <- sum + coef[i]*coef[i]*cov[vars[i], vars[i]]
  }
  if (n == 1) return(sum)

  # Sum up the covariances
  for (i in 1:(n-1)) {
    for (j in (i+1):n) {
      sum <- sum + 2*coef[i]*coef[j]*cov[vars[i], vars[j]]
    }
  }

  sum

} # END: getLinearComb.var

# Function to compute odds ratios and standard errors from
# log-odds ratios and se. 
getORfromLOR <- function(data, lor.var, lor.se.var,
                         or="OR", or.se="OR.SE") {

  data[, or] <- exp(data[, lor.var])

  # Change the standard errors
  temp <- data[, lor.se.var]
  data[, or.se] <- temp*data[, or]

  data

} # END: getORfromLOR

# Function to compute confidence intervals
getCI <- function(data, var, var.se, se=1, 
                  lower="LOWER", upper="UPPER") {
 
  zcrit <- qnorm(0.05/2, lower.tail=FALSE)
  if (se) {
    temp  <- zcrit*data[, var.se]
  } else {
    temp  <- zcrit*sqrt(data[, var.se])
  }

  data[, lower] <- data[, var] - temp
  data[, upper] <- data[, var] + temp 

  data

} # END: getCI

# Function to compute normal pvalues
pvalue.normal <- function(test, sided=2) {
  
  sided*pnorm(test, lower.tail=FALSE)

} # END: pvalue.normal

# Function to perform an unadjusted analysis based on genotype
#  frequency counts for cases and controls
unadjustedGLM.counts <- function(file.list, op=NULL) {

  #################################################################
  # file.list      List of type file.list with additional fields:
  #  caseCounts    Variables for the genotype frequencies 0, 1, 2
  #                among the cases.
  #                No default
  #  controlCounts Variables for the genotype frequencies 0, 1, 2
  #                among the controls.
  #                No default.
  #  covar         Covariate in the model.
  #                The default is c(0, 1, 2)
  #  caseOrder     Order for caseCounts in terms of covar
  #                The default is c(1, 2, 3)
  #  controlOrder  Order for controlCounts in terms of covar
  #                The default is c(1, 2, 3)
  #  caseSep       The default is "/"
  #  controlSep    The default is "/"
  #################################################################
  # op            List with names:
  #  outfile      The default is NULL
  #  copyVars     Variables to copy to the output data set
  #################################################################

  file.list <- default.list(file.list,
       c("file", "file.type", "header", "delimiter", "caseCounts",
         "controlCounts", "covar", "caseOrder", "controlOrder",
         "caseSep", "controlSep"),
       list("ERROR", 3, 1, "\t", "ERROR", "ERROR", c(0,1,2),
            1:3, 1:3, "/", "/"),
       error=c(1,0,0,0,1,1,0,0,0,0,0)
       )
  
  covar  <- file.list$covar
  nn     <- length(covar)
  v1     <- file.list$caseCounts
  v0     <- file.list$controlCounts
  n1     <- length(v1)
  n0     <- length(v0)
  order1 <- file.list$caseOrder
  order0 <- file.list$controlOrder
  if (n1 == nn) {
    v1    <- v1[order1]
    flag1 <- 1
  } else {
    flag1 <- 0
    sep1  <- file.list$caseSep
  }
  if (n0 == nn) {
    v0    <- v0[order0]
    flag0 <- 1
  } else {
    flag0 <- 0
    sep0  <- file.list$controlSep
  }

  # Read in the data
  x <- loadData(file.list$file, file.list)

  vars <- getListName(op, "copyVars")
  if (!is.null(vars)) {
    x <- removeOrKeepCols(x, c(vars, v1, v0), which=1)
  } else {
    x <- removeOrKeepCols(x, c(v1, v0), which=1)
  }
  x  <- unfactor.all(x)
  nr <- nrow(x)

  # Add new variables
  newVars <- c("beta", "se", "test", "pvalue")
  for (var in newVars) x[, var] <- NA

  mat <- matrix(data=NA, nrow=nn, ncol=2)
  for (i in 1:nr) {
    mat[] <- NA

    # Case counts
    if (flag1) {
      mat[, 1] <- as.numeric(unlist(x[i, v1]))
    } else {
      mat[, 1] <- as.numeric(getVecFromStr(x[i, v1], delimiter=sep1))
    }
    
    # Control counts
    if (flag0) {
      mat[, 2] <- as.numeric(unlist(x[i, v0]))
    } else {
      mat[, 2] <- as.numeric(getVecFromStr(x[i, v0], delimiter=sep0))
    }
    temp <- try(glm(mat~covar, family=binomial), silent=TRUE)
    if (class(temp)[1] != "try-error") {
      temp <- summary(temp)$coefficients
      if (nrow(temp) == 2) x[i, newVars] <- temp[2,]
    } 
  }

  temp <- getListName(op, "outfile")
  if (!is.null(temp)) {
    write.table(x, file=temp, sep="\t", row.names=FALSE, quote=FALSE)
  }

  x

} # END: unadjustedGLM.counts

# Function to compute the inflation factor
inflationFactor <- function(tests, squared=0, df=1) {

  # tests    Vector of Z-test statistics or squared Z-test
  #          statistics, or p-values
  # squared  0 or 1 if the tests are already squared

  i1  <- qchisq(0.5, df=df)
  if (!squared) tests <- tests*tests
  i2  <- median(tests, na.rm=TRUE)
  ret <- i2/i1
  ret

} # END: inflationFactor

# Function to compute genomic control adjusted p-values
GC.adj.pvalues <- function(tests, pvals=NULL, ifac=NULL) {

  # tests    Vector of Z-test statistics
  # ifac     NULL or the inflation factor to use
  #          The default is NULL

  test2 <- tests*tests
  if (is.null(pvals)) pvals <- 2*pnorm(abs(tests), lower.tail=FALSE)
  if (is.null(ifac)) ifac <- inflationFactor(test2, squared=1)
  ret  <- pchisq(test2/ifac, df=1, lower.tail=FALSE)
  ret

} # END: GC.adj.pvalues

# Function to swap 2 columns of a covariance matrix
swap2cols.cov <- function(mat, col1, col2, errorCheck=0) {

  # mat         Covariance matrix
  # col1        Column name or number
  # col2        Column name or number
  # errorCheck  0 or 1. If set to 1, then the matrix mat must
  #             have both row and column names for the error
  #             check to be done.
  #             The default is 0.
 
  if (col1 == col2) return(mat)

  nr <- nrow(mat)
  nc <- ncol(mat)
  if (nr != nc) stop("ERROR in swap2cols.cov: mat is not a square matrix")

  # Get row and column names
  cnames <- colnames(mat)
  rnames <- rownames(mat)
  cflag  <- !is.null(cnames)
  rflag  <- !is.null(rnames)

  # Get column numbers if variable names are passed in
  cflag1 <- is.character(col1)
  cflag2 <- is.character(col2)
  if (cflag1 || cflag2) {
    if (!cflag) stop("ERROR in swap2col.cov: mat must have column names")
    col1 <- (1:nr)[temp == col1]
    col2 <- (1:nr)[temp == col2]
  }

  # Let col1 be the smaller column
  temp <- col1
  if (col2 < col1) {
    col1 <- col2
    col2 <- temp
  }

  if (errorCheck && cflag && rflag) {
    mat0 <- mat
  } else {
    errorCheck <- 0
  }

  # Save col1 
  save <- mat[, col1]

  # Change columns col1 and col2
  if (col1 > 1) {
    vec <- 1:(col1-1) 
    mat[vec, col1] <- mat[vec, col2]
    mat[vec, col2] <- save[vec]
  }
  mat[col1, col1] <- mat[col2, col2]
  if (col1+1 < col2) {
    vec <- (col1+1):(col2-1)
    mat[vec, col1] <- mat[vec, col2]
    mat[vec, col2] <- save[vec]
  }
  mat[col2, col1] <- mat[col1, col2]
  mat[col2, col2] <- save[col1]
  if (col2 < nr) {
    vec <- (col2+1):nr
    mat[vec, col1] <- mat[vec, col2]
    mat[vec, col2] <- save[vec]
  }

  # Change rows col1 and col2
  vec  <- c(col1, col2)
  temp <- (1:nr)[-vec] 
  for (i in vec) {
    for (j in temp) mat[i, j] <- mat[j, i]
  }

  # Change row/col names
  if (cflag) {
    temp          <- cnames[col1]
    cnames[col1]  <- cnames[col2]
    cnames[col2]  <- temp
    colnames(mat) <- cnames
  }
  if (rflag) {
    temp          <- rnames[col1]
    rnames[col1]  <- rnames[col2]
    rnames[col2]  <- temp
    rownames(mat) <- rnames
  }

  # Error check
  if (errorCheck) {
    for (i in rnames) {
      for (j in cnames) {
        if (mat[i, j] != mat0[i, j]) {
          stop("ERROR in swap2cols: with the error check")
        }
      }
    }
  } 

  mat

} # END: swap2cols.cov

# Function to perform test for heterogeneity (logistic regression only)
heterTest <- function(data, X.vars, group.var, snp.var, op=NULL) {

  # data       Data frame
  # X.vars     Variables to be adjusted for
  # group.var  Variable that defines the groups 
  # snp.var    Name of the SNP variable
  # op         List with names:
  #   print    0 or 1 to print model summaries
  #            The default is 0
  #   levels   The levels of group.var that are to be used.
  #            The default is NULL so that all levels of group.var
  #            will be used.

  op <- default.list(op, c("print"), list(0))
  print <- op$print

  levels <- getListName(op, "levels")
  if (is.null(levels)) levels <- unique(data[, group.var])
  nlevels <- length(levels)
  
  # Variables in the model
  X.vars <- unique(c(X.vars, snp.var))

  nTest <- 0
  minP  <- 9999
  for (i in 1:(nlevels - 1)) {
    for (j in (i+1):nlevels) {
      # Get the subgroups to be included in the model
      vec  <- c(levels[i], levels[j])
      temp <- data[, group.var] %in% vec
      temp[is.na(temp)] <- FALSE   
      dat2 <- data[temp, ]

      # Define the design matrix
      X <- dat2[, X.vars]
      
      # Define the response. Set one group to 1
      y <- rep.int(0, times=nrow(X))
      temp <- dat2[, group.var] == vec[1]
      y[temp] <- 1

      nTest <- nTest + 1
      fit <- try(glm(y ~ ., data=X, family="binomial"), silent=TRUE)
      if ("try-error" %in% class(fit)) next
      if (!fit$converged) next

      s <- summary(fit)
      if (print) {
        print(vec)
        print(table(dat2[, group.var]))
        print(s)
      }
      temp <- s$coefficients
      pval <- temp[snp.var, 4]
      minP <- min(minP, pval)    
    }
  }  

  minP <- min(1, minP*nTest)

  minP

} # heterTest

# Function to compute frequency counts for a vector of intervals.
# The returned object will be a data frame of frequency counts for
# the partitioned intervals or if data is passed in, then the returned
# object will be data with a new column.
freqCounts.var <- function(vec, intervals, leftEndClosed=1, data=NULL, 
                           newVar="newVar", newVarCats=NULL) {
 
  # vec              Numeric vector
  #                  No default
  # intervals        Numeric vector of intervals. Ex: c(0, 10, 20, 50, 200)
  #                  No default
  # leftEndClosed    0 or 1 Set to 1 for intervals [a , b).
  #                  Note: if a=b, then the interval is [a, a] and the next
  #                  interval will be (a, b) 
  # data             Data frame to be returned with the new variable newVar
  #                  on it with the disjoint categories.
  #                  The default is NULL
  # newVar           The name of the new variable if data is passed in
  #                  The default is "newVar".  
  # newVarCats       Vector of categories for newVar
  #                  The default is NULL

  intervals <- sort(intervals)
  intervals <- c(-Inf, intervals, Inf)
  n         <- length(intervals) - 1
  ret <- data.frame(rep.int(0, times=n+1))
  colnames(ret) <- "FREQ"
  if (leftEndClosed) {
    left  <- "["
    right <- ")"
    lop   <- ">="
    rop   <- "<"
  } else {
    left  <- "("
    right <- "]"
    lop   <- ">"
    rop   <- "<="
  }

  dFlag <- !is.null(data)
  if (dFlag) {
    data[, newVar] <- "MISSING"
    # Check for integers
    temp <- (vec == as.integer(vec))
    temp[is.na(temp)] <- TRUE
    if (all(temp)) {
      intFlag <- 1
    } else {
      intFlag <- 0
    }
    catFlag <- !is.null(newVarCats)
  } 

  rnames <- NULL
  flag   <- 0
  for (i in 1:n) {
    a <- intervals[i]
    b <- intervals[i+1]
    
    if (a == b) {
      text  <- paste("(vec == ", a, ")", sep="") 
      rtemp <- paste("[", a, ", ", b, "]", sep="")
      dstr  <- as.character(a)
      flag <- 1
    } else {
      if (flag) {
        # Previous had a == b, so left interval should be open to obtain disjoint sets
        text  <- paste("(vec", ">", a, ") & (vec", rop, b, ")", sep="")
        rtemp <- paste("(", a, ", ", b, right, sep="")
      } else {
        text  <- paste("(vec", lop, a, ") & (vec", rop, b, ")", sep="")
        rtemp <- paste(left, a, ", ", b, right, sep="")
      } 
      flag <- 0
      if (dFlag) {
        if (a == -Inf) {
          if (leftEndClosed) {
            dstr <- paste("lt", b, sep="")
          } else {
            dstr <- paste("lteq", b, sep="")
          }
        } else if (b == Inf) {
          if ((intFlag) & (!leftEndClosed)) a <- a + 1
          dstr <- paste(a, "plus", sep="")
        } else {
          if (intFlag) {
            if (!leftEndClosed) {
              a <- a + 1
            } else {
              b <- b - 1
            }
          }
          dstr <- paste(a, "to", b, sep="")
        }
      }
    }
    # Get the logical vector
    temp <- eval(parse(text=text))
    temp[is.na(temp)] <- FALSE
    ret[i, "FREQ"] <- sum(temp, na.rm=TRUE)
    rnames <- c(rnames, rtemp)

    if ( (dFlag) & (any(temp)) ){ 
      if (catFlag) dstr <- newVarCats[i]
      data[temp, newVar] <- dstr
    }
  }
  
  # Count the number of missing
  rnames <- c(rnames, "NA")
  ret[n+1, "FREQ"] <- sum(is.na(vec))
  rownames(ret) <- rnames

  if (dFlag) {
    print(ret)
    return(data)
  }
  ret

} # freqCounts.var

# Function to standardize a continuous vector
standardize.z <- function(vec) {

  mu <- mean(vec, na.rm=TRUE)
  se <- sqrt(var(vec, na.rm=TRUE))
  ret <- (vec - mu)/se
  ret 

} # END: standardize.z

# Function to create a design matrix
dsgnMat <- function(data, vars, facVars, removeInt=1) {

  # data        Data frame
  # vars        Character vector of variable names or a formula
  # facVars     Character vector of factor names

  if (is.null(vars)) return(list(designMatrix=NULL, newVars=NULL)) 

  # See if vars is a character string containing a formula
  if ((length(vars) == 1) && (substr(vars, 1, 1) == "~")) {
    vars <- as.formula(vars)
  }

  # Determine if vars is a formula
  if ("formula" %in% class(vars)) {
    # Get the design matrix
    design <- model.matrix(vars, data=data)

    # Remove the intercept, if needed
    newVars <- colnames(design)
    if (removeInt) {
      if (newVars[1] == "(Intercept)") {
        design  <- removeOrKeepCols(design, 1, which=-1)
        newVars <- newVars[-1]
      }
    }

    return(list(designMatrix=design, newVars=newVars))    
  }

  design  <- removeOrKeepCols(data, vars, which=1)
  newVars <- NULL
  if (!is.null(facVars)) {
    temp <- vars %in% facVars
    if (any(temp)) {
      temp    <- vars[temp]
      temp    <- createDummy(design, vars=temp)
      design  <- temp$data
      newVars <- temp$newVars
    }
  } 
  design <- as.matrix(design)

  # Check for constant variables
  design <- checkForConstantVar(design, msg=1)$data

  if (!removeInt) {
    # Add intercept
    cnames <- colnames(design)
    design <- cbind(1, design)
    colnames(design) <- c("Intercept", cnames)
  }

  # Make sure matrix is numeric
  d <- dim(design)
  cnames <- colnames(design)
  design <- as.numeric(design)
  dim(design) <- d
  colnames(design) <- cnames

  list(designMatrix=design, newVars=newVars)

} # END: dsgnMat

# Function to return genotype stats
getGenoStats <- function(vec, MAF=1, freqCounts=1) {

  # Vec must be numeric coded as 0-1-2 or NA

  if (MAF) {
    MAF2 <- getMAF(vec)
  } else {
    MAF2 <- NULL
  }
  if (freqCounts) {
    counts <- getGenoCounts(vec)
  } else {
    counts <- NULL
  }
  n.miss   <- sum(is.na(vec))
  len      <- length(vec)
  missRate <- n.miss/len
  n        <- len - n.miss

  list(MAF=MAF2, n.miss=n.miss, freqCounts=counts, missRate=missRate, n=n)

} # END: getGenoStats

# Function to return the extreme subjects based on a score
getExtremeSubs <- function(id, cc, score, n=500, study=NULL) {

  # Get cases with lowest score
  temp   <- cc == 1
  id1    <- id[temp]
  temp   <- sort(score[temp], index.return=TRUE)$ix
  id1    <- id1[temp]
  case   <- id1[1:n]

  # Get controls with highest score
  temp   <- cc == 0
  id1    <- id[temp]
  temp   <- sort(score[temp], decreasing=TRUE, index.return=TRUE)$ix
  id1    <- id1[temp]
  cntl   <- id1[1:n]

  if (!is.null(study)) {
    # Save info for the chosen subjects
    temp <- id %in% c(case, cntl)
    s2   <- study[temp]
    cc2  <- cc[temp]

    # Let each study have an equal number of cases and controls
    ustudy <- unique(study)
    nstudy <- length(ustudy)

    # Remove chosen subjects
    temp  <- !(id %in% c(case, cntl))
    id    <- id[temp]
    cc    <- cc[temp]
    score <- score[temp]
    study <- study[temp]   
    for (i in 1:nstudy) {
      # Get the study counts for the chosen subjects
      ncase <- sum((s2 == ustudy[i]) & (cc2 == 1))
      ncntl <- sum((s2 == ustudy[i]) & (cc2 == 0))

      if (ncase < ncntl) {
        value <- 1
        dec   <- FALSE
      } else if (ncase > ncntl) {
        value <- 0
        dec   <- TRUE
      } else {
        next
      }
      # The number of subjects we need
      m <- abs(ncase - ncntl)

      temp   <- (cc == value) & (study == ustudy[i])
      id1    <- id[temp]
      temp   <- sort(score[temp], decreasing=dec, index.return=TRUE)$ix
      id1    <- id1[temp]
      subs   <- id1[1:m]

      if (value == 1) {
        case <- c(case, subs)
      } else {
        cntl <- c(cntl, subs)
      }
    }
  }

  list(case=case, control=cntl) 

} # END: getExtremeSubs

# Function to add the OR and confidence intervel onto a data frame or matrix
getOR.CI <- function(x, op=NULL) {

  op <- default.list(op, 
         c("beta.var", "se.var", "OR.name", "CI.name", "alpha", "digits"),
           list("Beta", "SE", "OR", "OR.CI", 0.05, 4))

  z <- qnorm(1 - (op$alpha)/2)

  cn   <- colnames(x)
  beta <- as.numeric(x[, op$beta.var])
  se   <- as.numeric(x[, op$se.var])
  or   <- exp(beta)
  l    <- exp(beta - z*se)
  l    <- round(l, digits=op$digits)
  u    <- exp(beta + z*se)
  u    <- round(u, digits=op$digits)
  ci   <- paste("(", l, ", ", u, ")", sep="") 
  x    <- cbind(x, or, ci) 
  colnames(x) <- c(cn, op$OR.name, op$CI.name)

  x

} # END: getOR.CI

# Function to generete multi-variate random normal vectors
myrmvnorm <- function(n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)), 
    method = c("eigen", "svd", "chol"), saveObj=NULL) {

  # Taken from rmvnorm function in the mvtnorm package. It has been modified to
  #   return and input an object that is used for generating the random vectors, so 
  #   that a singular value decomposition or cholesky decomposition does not
  #   have to be redone.
  # n
  # mean
  # sigma
  # method
  # saveObj   For efficiency in calling the function more than once with 
  #           the same input data

    if (!isSymmetric(sigma, tol = sqrt(.Machine$double.eps), 
        check.attributes = FALSE)) {
        stop("sigma must be a symmetric matrix")
    }
    if (length(mean) != nrow(sigma)) {
        stop("mean and sigma have non-conforming size")
    }
    sigma1 <- sigma
    dimnames(sigma1) <- NULL
    if (!isTRUE(all.equal(sigma1, t(sigma1)))) {
        warning("sigma is numerically not symmetric")
    }
    method <- match.arg(method)
    if (is.null(saveObj)) {
      if (method == "eigen") {
        ev <- eigen(sigma, symmetric = TRUE)
        if (!all(ev$values >= -sqrt(.Machine$double.eps) * abs(ev$values[1]))) {
            warning("sigma is numerically not positive definite")
        }
        retval <- ev$vectors %*% diag(sqrt(ev$values), length(ev$values)) %*% 
            t(ev$vectors)
      }
      else if (method == "svd") {
        sigsvd <- svd(sigma)
        if (!all(sigsvd$d >= -sqrt(.Machine$double.eps) * abs(sigsvd$d[1]))) {
            warning("sigma is numerically not positive definite")
        }
        retval <- t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d)))
      }
      else if (method == "chol") {
        retval <- chol(sigma, pivot = TRUE)
        o <- order(attr(retval, "pivot"))
        retval <- retval[, o]
      }
      saveObj <- retval

    } # END: if (is.null(retval)) 
    
    retval <- matrix(rnorm(n * ncol(sigma)), nrow = n) %*% saveObj
    retval <- sweep(retval, 2, mean, "+")
    colnames(retval) <- names(mean)

    list(randomVectors=retval, saveObj=saveObj)

} # END: myrmvnorm

# This function coverts a heritability estimate in the liability-threshold (LT) scale 
# to that in the log-risk scale.
her2.log<-function(prev.D, her2.LT) {

  # Arguments
  # prev.D: prevalence of disease of interest
  # her2.LT: heritability estimate in the LT scale

  ### Example ####################################################
  # prev.D<-0.005
  # her2.LT<-0.32
  # her2<-her2.log(prev.D, her2.LT)
  ### AUC calculation based on heritability in the log-risk scale
  # pnorm(sqrt(her2/2))
  ################################################################

  return((dnorm(qnorm(1-prev.D))/prev.D)^2*her2.LT)

} # END: her2.log

Try the CGEN package in your browser

Any scripts or data that you put into this service are public.

CGEN documentation built on April 28, 2020, 8:08 p.m.