Nothing
maternCholSolve = function(param, obsCov, coordinates){
cholCovMat = geostatsp::matern(x=coordinates,
param=param, type='cholesky')
detCholCovMat = attributes(cholCovMat)$logDetHalf
if(FALSE){ # do this in R
# covMat = geostatsp::matern(x=coordinates, param=param)
# cholCovMat = chol(covMat)
# cholCovMat %*% t(cholCovMat) = covMat
# cholCovInvXY = cholCovMat^{-1} %*% cbind(obs, covariates)
cholCovInvXY = solve(cholCovMat, obsCov)
# cholCovInvX = solve(cholCovMat, covariates)
cholCovInvX = cholCovInvXY[,-1]
# cholCovInvY = cholCovMat^{-1} %*% observations
#cholCovInvY = solve(cholCovMat, observations)
cholCovInvY = cholCovInvXY[,1]
cholCovInvXcross = crossprod(cholCovInvX)
cholCovInvXcrossInv = solve(cholCovInvXcross)
detCholCovInvXcross = determinant(cholCovInvXcross)$modulus
betaHat = as.vector(
cholCovInvXcrossInv %*%
crossprod(cholCovInvX, cholCovInvY)
)
resids = obsCov[,1] - as.vector(obsCov[,-1] %*% betaHat)
# sigsqhat = resids' %*% Vinv %*% residsx
# = resids' Linv' Linv resids
cholCovInvResid = solve(cholCovMat, resids)
detCholCovMat = determinant(cholCovMat)$modulus
Nobs = nrow(obsCov)
Ncov = ncol(obsCov)-1
Nadj = c(ml=Nobs, reml=Nobs-Ncov)
totalSsq = as.vector(crossprod(cholCovInvResid))
totalVarHat = totalSsq/Nadj
minusTwoLogLik =
Nadj * log(2*pi) +
2*detCholCovMat
minusTwoLogLik = cbind(
fixedVariance = minusTwoLogLik+totalSsq,
estimatedVariance =
minusTwoLogLik + Nadj + Nadj * log(totalVarHat)
)
minusTwoLogLik['reml',] = minusTwoLogLik['reml',] + detCholCovInvXcross
varMle = outer(totalVarHat, param[c("variance","nugget")])
names(betaHat) = colnames(cholCovInvXY)[-1]
cholCovInvXcrossInv=as.matrix(cholCovInvXcrossInv)
dimnames(cholCovInvXcrossInv)=list(names(betaHat),names(betaHat))
varBetaHat = array(NA,
c(dim(cholCovInvXcrossInv),2,2),
dimnames = c(dimnames(cholCovInvXcrossInv),
list(
c('fixedVariance','estimatedVariance'),
c('ml','reml')
)
)
)
varBetaHat[,,'fixedVariance','ml'] =
varBetaHat[,,'fixedVariance','reml'] =
cholCovInvXcrossInv
varBetaHat[,,'estimatedVariance','ml'] =
cholCovInvXcrossInv*totalVarHat['ml']
varBetaHat[,,'estimatedVariance','reml'] =
cholCovInvXcrossInv*totalVarHat['reml']
resultR = list(
minusTwoLogLik = minusTwoLogLik,
varMle = varMle,
betaHat = betaHat,
varBetaHat = varBetaHat,
totalVarHat = totalVarHat,
resids=resids,
detCholCovInvX=detCholCovInvXcross
)
} else { # use C
Nobs = nrow(obsCov)
Ncov = ncol(obsCov)-1
Nrep = 1
temp = resultC = .C(
C_maternLogLGivenChol,
obsCov = as.double(obsCov),
N= as.integer(c(Nobs,Nrep,Ncov)),
cholCovMat = as.double(cholCovMat),
totalSsq = as.double(-9.9),
betaHat = as.double(rep(-9.9, Ncov)),
varBetaHat = as.double(rep(-9.9, Ncov* Ncov)),
determinants=as.double(c(-9.9,-9.9))
)
resultC$detCholCovInvXcrossHalf = resultC$determinants[2]
Nadj = c(ml=Nobs, reml=Nobs-Ncov)
totalSsq = resultC$totalSsq
totalVarHat = totalSsq/Nadj
minusTwoLogLik =
Nadj * log(2*pi) +
2*detCholCovMat
minusTwoLogLik = cbind(
fixedVariance = minusTwoLogLik+ totalSsq,
estimatedVariance =
minusTwoLogLik + Nadj + Nadj * log(totalVarHat)
)
minusTwoLogLik['reml',] = minusTwoLogLik['reml',] +
2*resultC$detCholCovInvXcrossHalf
varMle = outer(totalVarHat, param[c("variance","nugget")])
betaHat = resultC$betaHat
names(betaHat) = colnames(obsCov)[-1]
varBetaHat = new("dsyMatrix",
Dim = as.integer(c(Ncov, Ncov)),
uplo="L",
x=resultC$varBetaHat)
varBetaHat = array(as.matrix(varBetaHat),
c(length(betaHat),length(betaHat),2,2),
dimnames = list(
names(betaHat), names(betaHat),
c('fixedVariance','estimatedVariance'),
c('ml','reml')
)
)
varBetaHat[,,'estimatedVariance','ml'] =
varBetaHat[,,'estimatedVariance','ml']*totalVarHat['ml']
varBetaHat[,,'estimatedVariance','reml'] =
varBetaHat[,,'estimatedVariance','reml']*totalVarHat['reml']
resultR = list(
minusTwoLogLik = minusTwoLogLik,
varMle = varMle,
betaHat = betaHat,
varBetaHat = varBetaHat,
totalVarHat = totalVarHat,
detCholCovInvX=2*resultC$detCholCovInvXcrossHalf
)
}
return(resultR)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.