cedar <- function(Y_raw, # bulk observed data row:feature, col:sample
prop, # cell type proportion: row:sample, col:cell type
design.1, # covariates with cell type specific (cs-) effects
# row: sample, col: covariate
design.2=NULL, # covariates without cs-effects
# row: sample, col: covariate
factor.to.test=NULL, # covariate to be tested
# form1: only name of covariate
# form2: covariate name + contrast levels
# (ref level at last)
pval = NULL, # independent csTest inference result "p-value"
# could come from TOAST, TCA or any other methods
# row: feature, col: cell type
p.adj = NULL, # independent csTest inference result "fdr"
# row: feature, col: cell type
tree = NULL, # tree used to account cell type correlation
# col: cell type, row: tree layer
# in same row, different numbers represent different nodes
# cell types with same number in same row
# means they have same internal node at this level.
# example:
# 1,1,1,1
# 1,1,2,2
# 1,2,3,4
# If assign cell type name for each column, the name must be the same as input of 'prop'
p.matrix.input = NULL, # prior probability on each node of the
# tree structure. Only work when tree structure has been specified.
# The dimension must same as tree input.
de.state = NULL, # de.state of each feature in each cell type
# 0: non-DE; 1: DE
cutoff.tree = c('fdr', 0.01), # cut off used to define DE
# state to estimate tree
# could be 'fdr' or 'pval'
# default it 'fdr'=0.01
cutoff.prior.prob = c('pval', 0.01), # cut off used to
# define DE state to
# estimate prior prob
# could be 'fdr' or 'pval'
# default is 'pval'=0.01
similarity.function = NULL, # function used to calculate similarity
# between cell types. The input is matrix of log transformed p-value
# dimension is : selected gene number * cell number
parallel.core = NULL, # integer to specificy number of
# cores to use
corr.fig = FALSE, # whether to plot pval correlation,
run.time = TRUE, # whether report running time
tree.type = c('single','full') # two tree structures as input
){
### Basic info
gene.num <- dim(Y_raw)[1]
cell.num <- dim(prop)[2]
### Step 1: first round inference with any possible packages.
### If choose to use TOAST (pval is null), then could use a function
### called 'toast.first.round'
### This will give run toast for each cell type and put all results in
### a list
### no matter whether we use toast for first round inference, the design matrix
### is needed for posterior probability calculation in later steps
Design_out <- makeDesign_tree(design.1 = design.1, design.2=design.2, Prop=prop,
factor.to.test=factor.to.test)
Design_matrix <- Design_out$design_matrix
toast_res <- NULL
if( is.null(pval) & is.null(p.adj) ){
message('No prior inference information, run TOAST for first round inference \n')
fitted_model <- fitModel( Design_out, Y_raw )
toast_res <- toast.first.round(fitted_model = fitted_model,
celltypes = fitted_model$all_cell_types,
coef = factor.to.test)
### extract pval and fdr information from first round toast analysis
cell.types <- fitted_model$all_cell_types
pval = p.adj <- matrix(NA, nrow = gene.num, ncol = cell.num )
colnames(pval) = colnames(p.adj) <- cell.types
rownames(pval) = rownames(p.adj) <- rownames(Y_raw)
for( i in 1:cell.num ){
pval[,i] <- toast_res[[i]]$p_value
p.adj[,i] <- toast_res[[i]]$fdr
}
}else if( !is.null(pval) & is.null(p.adj) ){
cell.types <- colnames(pval)
p.adj <- matrix(NA, nrow = gene.num, ncol = cell.num )
colnames(p.adj) <- cell.types
rownames(p.adj) <- rownames(pval)
### calculate fdr for each cell type p-value.
for( i in 1:cell.num ){
p.adj[,i] <- p.adjust(pval[,i],method='fdr')
}
}else if( is.null(pval) & !is.null(p.adj) ){
stop( 'p-value is needed')
}
### determine DE state for tree estimation if not provided
de.res <- matrix(NA,ncol=cell.num, nrow=gene.num)
if(is.null(de.state)){
# if de.state not provided then
# use fdr as cutoff
if(cutoff.tree[1]=='fdr'){
if(length(cutoff.tree) == (cell.num + 1) ){
# in this case, each cell type has different cutoffs
for(cell.ix in 1:cell.num){
de.res[,cell.ix] <- (p.adj[,cell.ix] <
as.numeric(cutoff.tree[,(cell.ix+1)]))*1
}
if( sum( rowSums(de.res) > 0) < 2 & 'full' %in% tree.type){
cat('Not enough DE called for tree estimation. \n
Please use less restrictive cutoff for tree estimation.')
if(!is.null(toast_res)){
return(list('toast_res' = toast_res))
}
stop('CeDAR stops')
}
}else if(length(cutoff.tree) == 2){
# in this case, all cell types have same cutoffs
de.res <- (p.adj < as.numeric(cutoff.tree[2])*1)
if( sum( rowSums(de.res) > 0) < 2 & 'full' %in% tree.type){
cat('Not enough DE called for tree estimation. \n
Please use less restrictive cutoff for tree estimation.')
if(!is.null(toast_res)){
return(list('toast_res' = toast_res))
}
stop('CeDAR stops')
}
}else{
stop("length of cutoff.tree is incorrect.")
}
}else if(cutoff.tree[1]=='pval'){
# use pvalue as cutoff
if(length(cutoff.tree) == (cell.num + 1) ){
for(cell.ix in 1:cell.num){
de.res[,cell.ix] <- (pval[,cell.ix] <
as.numeric(cutoff.tree[,(cell.ix+1)]))*1
}
}else if(length(cutoff.tree) == 2){
de.res <- (pval < as.numeric(cutoff.tree[2]))*1
}else{
stop("length of cutoff.tree is incorrect.")
}
}else{
stop('Invalid input of cutoff.tree variable')
}
}else{
de.res <- de.state
}
### transformation of pvalue = 0 to pvalue = min.pval* 0.001
### in case log10 transformation can not work correctly
for(cell.ix in 1:cell.num){
min.tmp <- min(pval[pval[,cell.ix]>0 ,cell.ix])
if(-log10(min.tmp) > 300 ){
pval[ pval[,cell.ix]==0, cell.ix] <- min.tmp
}else{
pval[ pval[,cell.ix]==0, cell.ix] <- min.tmp*0.001
}
}
### Step 1.5: plotCorr show correlation between cell types based on first round
### independent test result
fig.res <- NULL
if(corr.fig == TRUE){
message('Generating scatter plot of -log10(pval) among cell types \n')
fig.res <- plotCorr(pval = data.frame(pval),
de.state = data.frame(de.res))
}
### Step 2: Estimate a tree structure based on -log10(pval)
### Features used should be filtered by users
### This includes two modes: 1. user gives features to build up trees
### 2. Estimate a tree by FDR/pval cutoff
if( is.null(tree) ){
tree.input <- tree.est(pval, de.res, similarityFun = similarity.function, tree.type)
}else{
tree.type <- 'custom'
tree.input <- list()
tree.input[['custom']] <- tree
}
### Step 3: Estimate prior probabilities based on given tree structure
### Step 4: Estimate posterior probability
### Input includes:
### 1. tree structure
### 2. design matrix
### 3. observed bulk data
### 4. first round pvalue result (could come from other packages)
if(cutoff.prior.prob[1]=='fdr'){
cutoff.fdr <- as.numeric(cutoff.prior.prob[2])
cutoff.pval <- NULL
inference_input <- p.adj
}else if(cutoff.prior.prob[1] == 'pval'){
cutoff.fdr <- NULL
cutoff.pval <- as.numeric(cutoff.prior.prob[2])
inference_input <- pval
}
tree_res <- list()
time_res <- list()
for(tree.ix in tree.type){
message(paste0('inference with tree: ',tree.ix, '\n'))
time.tmp <- Sys.time()
tree_res[[tree.ix]]<- post_calc_tree(Design_matrix = Design_matrix,
Y_raw = Y_raw,
tree.input = tree.input[[tree.ix]],
p.matrix.input = p.matrix.input,
toast_res = inference_input,
design.1 = design.1,
design.2 = design.2,
factor.to.test = factor.to.test,
fdr=cutoff.fdr,
p.value = cutoff.pval,
core.num = parallel.core)
time_res[[tree.ix]] <- as.numeric(Sys.time()) - as.numeric(time.tmp)
}
if(run.time == TRUE & corr.fig == TRUE){
all.res <- list('toast_res'=toast_res, 'tree_res'=tree_res, 'fig'=fig.res,
'time_used'=time_res)
}else if(run.time == FALSE & corr.fig == TRUE){
all.res <- list('toast_res'=toast_res, 'tree_res'=tree_res, 'fig'=fig.res)
}else if(run.time == TRUE & corr.fig == FALSE){
all.res <- list('toast_res'=toast_res, 'tree_res'=tree_res, 'time_used'=time_res)
}else{
all.res <- list('toast_res'=toast_res, 'tree_res'=tree_res)
}
return(all.res)
}
### function name: makeDesign_tree
### function usage: create design matrix
### parameter explanation:
### design.1: covariates have cell type specific effect (N * p1)
### design.2: covariates have same effect for all cell types (N * p2)
### Prop: proportion for each cell type (N * K)
### factor.to.test: the covariate going to be tested (covariate name or
### covariate name with
### two levels to compare )
makeDesign_tree <- function(design.1, design.2, Prop, factor.to.test){
if (!is.vector(Prop)) {
# cell type number K
K <- ncol(Prop)
if (is.null(colnames(Prop))) {
# create cell type name if it does not exist
colnames(Prop) <- paste0("celltype", seq_len(K))
}
}
else {
K <- 1
}
covariate.name.1 <- colnames(design.1)
covariate.name.2 <- colnames(design.2)
celltype.name <- colnames(Prop)
if(ncol(design.1) > 1){
if(length(factor.to.test) == 1){
# In this situation, user wants to test the covariate globally if
# factor.to.test contains multiple levels.
# put the covariate to last column for convenience
covariate.name.1 <- c(covariate.name.1[covariate.name.1 != factor.to.test],
factor.to.test)
design.1 <- data.frame(design.1[,covariate.name.1])
}else if(length(factor.to.test) == 3){
# In this situation, user wants to compare two levels
# make the second level as reference for convenience
covariate.name.1 <- c(covariate.name.1[covariate.name.1 != factor.to.test[1]],
factor.to.test[1])
design.1 <- data.frame(design.1[,covariate.name.1])
# set the third element in 'factor.to.test' as reference level
design.1[,factor.to.test[1]] <- relevel(design.1[,factor.to.test[1]], factor.to.test[3])
}
}
# in our model, we also include cell type composition as main terms
# in addition, design.2 provide covariates have NO cell type specific effects
# so they are also modeled as main terms.
# Put them in front of cell type specific covariates for convenience
if(is.null(design.2)){
dd <- cbind(Prop, design.1)
}else{
dd <- cbind(design.2, Prop, design.1)
}
# create formula for main terms
formul <- paste("~", paste(c(covariate.name.2, celltype.name), collapse = "+"))
# create interaction term
for (i in 1:ncol(design.1)) {
tmp <- paste(celltype.name, covariate.name.1[i],
sep = ":")
intterms <- paste(tmp, collapse = "+")
formul <- paste(formul, intterms, sep = "+")
}
design_matrix <- model.matrix(as.formula(formul), dd)[,-1] # remove intercept
# remove column with all zeros
design_matrix <- design_matrix[, !colSums(design_matrix == 0) == nrow(Prop)]
# remove replicated column
design_matrix <- unique(design_matrix, MARGIN = 2)
formul <- paste0("~ ", paste(colnames(design_matrix), sep = "+",
collapse = "+"))
return(list(design_matrix = design_matrix, Prop = Prop, design.1 = design.1,
design.2 = design.2, all_coefs = c(covariate.name.1, covariate.name.2),
all_cell_types = colnames(Prop), formula = formul))
}
### function name: toast.first.round
### function usage: if the user does not provide any independent inference result
### then do csTest with TOAST method
toast.first.round <- function(fitted_model, celltypes, coef, var_shrinkage =T){
### used to store result
res <- list()
### test for each cell type
for(cell in 1:length(celltypes)){
### store the TOAST result in res[[cell]] list
res[[celltypes[cell] ]] <- csTest(fitted_model, coef = coef,
cell_type = celltypes[cell], sort = F,
var_shrinkage = var_shrinkage, verbose = F)
}
return(res) ### return list res
}
### function name: tree.est
### function usage: estimate tree structure based on p-values
tree.est <- function(pval, de.res, similarityFun = NULL, tree.type){
tree.input <- list()
cell.num <- ncol(pval)
if('single' %in% tree.type){
tree.input[['single']] <- rbind(rep(1,cell.num), seq(1,cell.num,1))
colnames(tree.input[['single']]) <- colnames(pval)
}
if('full' %in% tree.type){
log.pval <- -log10(pval[rowSums(de.res) > 0, ])
if(is.null(similarityFun)){
dist.corr <- as.dist( (1 - cor(log.pval, method = 'pearson' ))/2 )
}else{
dist.corr <- as.dist(similarityFun(log.pval))
}
hc.tree <- hclust( dist.corr )
cut.height <- sort(c(0,hc.tree$height),decreasing = T )
cut.thres <- cut.height
tree.input[['full']] <- t(cutree(hc.tree, h=cut.thres))
colnames(tree.input[['full']]) <- colnames(pval)
}
tree.input
}
post_calc_tree <- function( Design_matrix, Y_raw, tree.input, toast_res,
factor.to.test, fdr, design.1, design.2,
p.value =NULL, no_prior_info =FALSE,
p.matrix.input = NULL,core.num=NULL){
gene.num <- nrow(Y_raw) ### gene number
sample.size <- ncol(Y_raw)
cell.num <- ncol(tree.input) ### cell number
# create all DZ combination based on estimated tree structure
dz.combine.tmp <- DZ_combination_gen(tree.input)
var.index <- dz.combine.tmp[[1]]
dz.combine <- dz.combine.tmp[[2]]
z.states <- dz.combine[,(max(var.index)-cell.num+1):(max(var.index))]
all.z.states <- expand.grid(rep(list(0:1), cell.num ))
colnames(all.z.states) <- colnames(tree.input)
match.index <- index.match( dz.combine, all.z.states )
M.reduce <- M.cal(Design_matrix, all.z.states,
design.1=design.1, design.2 = design.2,
factor.to.test = factor.to.test)
W.all <- W.cal(var.index, dz.combine, toast_res, fdr = fdr,
p.value = p.value, p.matrix = p.matrix.input)
weight.all <- W.all[['weight']]
est.prob <- W.all[['est_prob']]
### different combination numbers between Z's and D
dz.combine.num <- nrow(dz.combine)
all.z.num <- nrow(all.z.states)
### pp is used to store posterior probability:
pp <- matrix(NA, ncol=(cell.num),nrow=gene.num)
p.ycz.sum <- matrix(NA, nrow = all.z.num, ncol = gene.num)
### log P(Z=1, Y) a vector, in which each element corresponding to a cell type
p.z1y <- matrix(NA, nrow = gene.num, ncol = cell.num)
if(is.null(core.num)){
cores_num <- 1
}else{
cores_num <- min(core.num, parallel::detectCores()) #detectCores() - 2
}
p.ycz.sum.temp <- Marginal.L.parallel(X=M.reduce, Y=Y_raw, numCores = cores_num)
p.ycz.sum <- t(p.ycz.sum.temp)
if(no_prior_info == TRUE){
p.yzd <- t(p.ycz.sum)
p.y <- Rsumlog.matrix(p.yzd)
for( i in 1:cell.num){
p.z1y[,i] <- Rsumlog.matrix(p.yzd[,all.z.states[,i]==1 ])
}
}else{
p.ycz.sum.dz.states <- p.ycz.sum[match.index, ]
p.yzd <- t(p.ycz.sum.dz.states + log(weight.all))
p.y <- Rsumlog.matrix(p.yzd)
for( i in 1:cell.num){
p.z1y[,i] <- Rsumlog.matrix(p.yzd[,z.states[,i]==1 ])
}
}
pp <- exp(p.z1y - p.y )
colnames(pp) <- colnames(tree.input)
rownames(pp) <- rownames(Y_raw)
res.all <- list('est_prob'= est.prob, 'weight'=weight.all, 'dz_combine'=dz.combine,
'tree_structure'=tree.input, 'node_index'=var.index ,'pp'=pp)
return(res.all)
}
DZ_combination_gen <- function(tree.input ){
tree.level <- dim(tree.input)[1]
cell.num <- dim(tree.input)[2]
var.index <- matrix(NA, ncol = cell.num, nrow = tree.level)
var.num <- rep(NA, tree.level)
for( i in 1:tree.level){
var.num[i] <- length( unique(tree.input[i,]) )
var.index[i,] <- tree.input[i,] + sum(var.num[1:(i-1)])*( as.integer(i>1))
}
combine.current.tmp <- NULL
for(tl.ix in 1:tree.level){
tl.element.num <- length(unique(var.index[tl.ix,]))
combine.single.tmp <- expand.grid( rep(list(0:1), tl.element.num))
combine.current.tmp <- as.matrix( tidyr::expand_grid( x1=combine.current.tmp, x2 = combine.single.tmp ) )
## filter criteria:
## 1. splitting node: 0 -> 0, 1 -> 1 or 0;
## 2. single node keep previous result
## start from second layer of tree to the end of the tree
if(tl.ix > 1){
for( cell in 1:cell.num){
if(tl.ix == 2){
ix.rm <- which( apply(as.matrix(combine.current.tmp[,var.index[1:tl.ix,cell]]),1,diff) == 1 )
}else{
ix.rm <- which( apply( apply(as.matrix(combine.current.tmp[,var.index[1:tl.ix,cell]]),1,diff), 2, max) == 1 )
}
if(length(ix.rm) > 0 ){
combine.current.tmp <- combine.current.tmp[-ix.rm,]
}
}
# criteria 2
## 2. single node keep previous result
## strategy: a. check whether up node split; b. if not split, we only keep combination that keep same between the two nodes in two layers
tl.up.ix <- tl.ix - 1
nodes.up <- var.index[tl.up.ix, ]
nodes.current <- var.index[tl.ix,]
nodes.up.unique <- unique(nodes.up)
for(nodes.up.ix in nodes.up.unique){
if( length(unique(nodes.current[nodes.up == nodes.up.ix])) == 1 ){
ix.rm <- which( apply(combine.current.tmp[ , c(nodes.up.ix, unique(nodes.current[nodes.up == nodes.up.ix]) ) ], 1, diff) !=0 )
if(length(ix.rm) > 0 ){
combine.current.tmp <- combine.current.tmp[-ix.rm,]
}
}
}
}
}
return(list(node.index = var.index, dz.combine = combine.current.tmp))
}
index.match <- function(dz.combine, all.z.states){
match.ix <- c()
cell.num <- ncol(all.z.states)
col.num <- dim(dz.combine)[2]
z.cols <- (col.num - cell.num + 1):col.num
for( i in 1:nrow(dz.combine)){
for( n in 1:nrow(all.z.states)){
if(all(dz.combine[i, z.cols] == all.z.states[n,]) ){
match.ix <- c(match.ix, n)
break
}
}
}
return(match.ix)
}
M.cal <- function(Design_matrix, all.z.states, design.1, design.2, factor.to.test){
M.reduce <- list()
cell.num <- ncol(all.z.states)
cell.types <- colnames(all.z.states)
dz.combine.num <- nrow(all.z.states)
for(dz.ix in 1:dz.combine.num){
### remove interaction columns corresponding to Z's = 0
if(all(all.z.states[dz.ix,]==1)){
design.reduce <- Design_matrix
}else{
celltype.to.remove <- cell.types[all.z.states[dz.ix,] == 0]
if(length(factor.to.test)==1){
term.tmp <- paste0(celltype.to.remove,':' ,factor.to.test)
name.index <- c()
for(term.ix in 1:length(term.tmp)){
name.index <- c(name.index, grep(term.tmp[term.ix], colnames(Design_matrix)))
}
name.index <- unique(sort(name.index))
}else if(length(factor.to.test)==3){
term.tmp <- paste0(celltype.to.remove, ':', factor.to.test[1],
factor.to.test[2])
name.index <- c()
for(term.ix in 1:length(term.tmp)){
name.index <- c(name.index, grep(term.tmp[term.ix], colnames(Design_matrix)))
}
name.index <- unique(sort(name.index))
}
design.reduce <- Design_matrix[, - name.index ]
}
### projection matrix for column spaced defined on design.reduce
M.reduce[[dz.ix]] <- design.reduce %*% solve( t(design.reduce) %*% design.reduce ) %*% t(design.reduce)
}
return(M.reduce)
}
W.cal <- function(var.index, dz.combine, toast_res, fdr = 0.05, p.value = NULL, p.matrix = NULL){
dz.combine <- as.matrix(dz.combine)
if(is.list(toast_res)){
cell.num <- length(toast_res)
gene.num <- nrow(toast_res[[1]])
}else if(is.matrix(toast_res)){
cell.num <- ncol(toast_res)
gene.num <- nrow(toast_res)
}
layer.num <- nrow(var.index)
dz.combine.num <- nrow(dz.combine)
fdr.all.cell <- matrix(NA,ncol=cell.num,nrow = gene.num )
if(is.list(toast_res)){
for(i in 1:cell.num){
if( is.null(p.value)){
fdr.all.cell[,i] <- toast_res[[i]]$fdr
}else if( is.null(fdr)){
fdr.all.cell[,i] <- toast_res[[i]]$p_value
}
}
}else if(is.matrix(toast_res)){
fdr.all.cell <- toast_res
}
if( is.null(p.value)){
de.all.cell <- (fdr.all.cell < fdr)*1
}else if( is.null(fdr)){
de.all.cell <- (fdr.all.cell < p.value)*1
}
if( is.null(p.matrix) ){
p.cond.info <- matrix(NA, ncol = cell.num , nrow = layer.num)
### Calculate conditional probability
for(l in (layer.num -1):1){
nodes <- unique(var.index[l,])
node.num <- length(nodes)
for( node in nodes){
cell.ix <- which(var.index[l,] == node)
child.var <- unique(var.index[l+1,cell.ix])
if(length(child.var) ==1){
p.cond.info[(l+1),cell.ix] <- 1
}else{
de.all.ix <- which(rowSums(de.all.cell[,cell.ix]) > 0)
for(child in child.var){
ix <- which(var.index[l+1, ] == child)
if(length(ix) == 1){
de.num.tmp <- length(which(de.all.cell[,ix] >0 ) )
if(de.num.tmp ==0){
de.num.tmp <- 1
}
p.cond.info[l+1, ix ] <- de.num.tmp/ length(de.all.ix)
}else{
de.num.tmp <- length(which(rowSums(de.all.cell[,ix]) >0 ) )
if(de.num.tmp ==0){
de.num.tmp <- 1
}
p.cond.info[l+1, ix ] <- de.num.tmp/ length(de.all.ix)
}
}
}
if(l == 1){
if(length(cell.ix) ==1){
p.cond.info[l, cell.ix] <- mean(de.all.cell[,cell.ix]>0)
}else{
p.cond.info[l, cell.ix] <- mean(rowSums(de.all.cell[,cell.ix])>0 )
}
}
}
}
}else{
p.cond.info <- p.matrix
}
###### calculate prior probs (weights) for each DZ combination
prod.keep <- matrix(0, ncol= cell.num, nrow= layer.num )
for( i in 1:layer.num){
nodes <- unique(var.index[i,])
for(node in nodes){
prod.keep[ i, which(var.index[i, ] == node )[1] ] <- 1
}
}
weights.all <- rep(NA, dz.combine.num )
for(dz.combine.ix in 1:dz.combine.num){
dz.state <- dz.combine[dz.combine.ix, ]
#cat(dz.state,'\n')
dz.state.matrix <- matrix(dz.state[c(var.index)], nrow = layer.num, ncol = cell.num, byrow=F)
dz.state.cond.matrix.1 <- rbind(dz.state.matrix[1,], dz.state.matrix[-layer.num,] )
dz.state.cond.matrix.2 <- rbind(1 - dz.state.matrix[1,], dz.state.matrix[-layer.num,] )
dz.state.power.1 <- dz.state.matrix * dz.state.cond.matrix.1
dz.state.power.2 <- (1 - dz.state.matrix) * dz.state.cond.matrix.2
p.matrix <- (p.cond.info ^ dz.state.power.1 ) * ( (1 - p.cond.info) ^ dz.state.power.2)
weights.all[dz.combine.ix] <- prod( p.matrix ^ prod.keep)
}
res <- list('weight' = weights.all, 'est_prob'= p.cond.info)
return(res)
}
Marginal.L.parallel <- function(X, Y, numCores){
N = length(X)
sample.size <- ncol(Y)
foo <- function(i, Y, X, sample.size) {
mu_est <- Y %*% t(X[[i]])
resi.temp <- Y - mu_est
sd_est <- sqrt( rowMeans( (resi.temp - rowMeans(resi.temp))^2 ) * (1 - 1/(sample.size)) )
p.ycz <- dnorm(Y, mu_est, sd_est, log = T)
rowSums( p.ycz )
}
doParallel::registerDoParallel(cores=numCores)
cl <- parallel::makeCluster(numCores)
p.ycz.sum <- parallel::parSapply(cl, 1:N, foo, Y, X, sample.size)
parallel::stopCluster(cl)
return(p.ycz.sum)
}
Rsumlog.matrix <- function(a){
s <- a[,1]
for( i in 2:dim(a)[2] ){
s <- Raddlog.matrix(s, a[,i])
}
return(s)
}
Raddlog.matrix <- function(a,b){
result <- rep(0, length(a))
idx1 <- (a>b+200) | is.infinite(b)
result[idx1] <- a[idx1]
idx2 <- (b>a+200) | is.infinite(a)
result[idx2] <- b[idx2]
idx0 <- !(idx1|idx2)
result[idx0] <- a[idx0] + log1p(exp(b[idx0]-a[idx0]))
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.