Description Usage Arguments Details Value Author(s) References See Also Examples
ssea.prepare.structure
represents modules, genes, and markers in a
hierarchical structure.
1 | ssea.prepare.structure(moddata, gendata, nmods, ngens)
|
moddata |
module data (indexed identities) |
gendata |
mapping data (indexed identities) |
nmods |
number of modules |
ngens |
number of all genes |
ssea.prepare.structure
finds member genes of modules and marker
lists of genes; counts distinct markers within each module and obtains
module's density from this count; at the end, it returns hierarchically
structured results.
res |
a data list with the following components: modulesizes: module size modulelengths: module length moduledensities: module densities genesizes: gene sizes of module module2genesgene: list of module gene2loci: markers lists of genes |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000
## ssea.start() process takes long time while merging the genes sharing high
## amounts of markers (e.g. loci). it is performed with full module list in
## the vignettes. Here, we used a very subset of the module list (1st 10 mods
## from the original module file) and we collected the corresponding genes
## and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]
## save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
## run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
## Remove extremely big or small modules:
st <- tool.aggregate(job.msea$moddata$MODULE)
mask <- which((st$lengths >= job.msea$mingenes) &
(st$lengths <= job.msea$maxgenes))
pos <- match(job.msea$moddata$MODULE, st$labels[mask])
job.msea$moddata <- job.msea$moddata[which(pos > 0),]
## Construct hierarchical representation for modules, genes, and markers:
ngens <- length(job.msea$genes)
nmods <- length(job.msea$modules)
db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata,
nmods, ngens)
## Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.