Description Usage Arguments Value Author(s) References See Also Examples
kda2himmeli.exec
deals with the modules individually; takes a
particular amount of top key drivers of the given module in company with
the top key driver lists and colormap of all modules; traces module
memberships and produces colormap, it finds the edge and node lists for
the top key drivers and their neighborhood for a given module.
1 | kda2himmeli.exec(job, valdata, drivers, modpool, palette)
|
job |
data list including entire graph, nodes, modules information |
valdata |
GWAS pvalues of top loci of the nodes - if this information is available, sizes of the nodes in the figure will be correlated with the p-value of the top loci of the nodes - |
drivers |
top key drivers of the specified module |
modpool |
unique key driver list for all modules |
palette |
assigned unique color map for all modules |
res |
uniquely identified node and edge lists of the members belonging to the given module |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | ## get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
## set the relevant parameters:
job.kda$label<-"HDLC"
## parent folder for results
job.kda$folder<-"Results"
## Input a network
## columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
## Gene sets derived from ModuleMerge, containing two columns, MODULE,
## NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt",
package="Mergeomics")
## "0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
## The searching depth for the KDA
job.kda$depth<-1
## 0 means we do not consider the directions of the regulatory interactions
## while 1 is opposite.
job.kda$direction <- 1
## Finish the KDA process
job.kda <- kda.finish(job.kda)
## Get valdata including marker pvals
valdata <- tool.read(job.kda$nodfile)
z <- as.double(valdata$VALUE)
z <- (z/quantile(z, 0.95) + rank(z)/length(z))
valdata$SIZE <- pmin(4.0, z)
## Select subset of genes.
valdata <- kda2himmeli.identify(valdata, "NODE", job.kda$graph$nodes)
## Select top key drivers from each module.
## First, take module names from kda results
modules <- unique(job.kda$results$MODULE)
## Take top 2 KDs:
drivers <- kda2himmeli.drivers(job.kda$results, modules, ndriv=2)
drivers <- as.data.frame(drivers)
colnames(drivers) <- c("MODULE" , "NODE")
mods <- unique(drivers$MODULE)
modnames <- job.kda$modules[mods]
modnames[which(mods == 0)] <- "NON.MODULE"
palette <- kda2himmeli.colormap(length(mods))
palette[,which(mods == 0)] <- c(90,90,90)
drivers$MODNAMES <- modnames[match(drivers$MODULE, mods)]
drivers$NODNAMES <- job.kda$graph$nodes[drivers$NODE]
for(i in 1:nrow(drivers))
drivers$COLOR[i] <- paste(palette[1, match(drivers$MODULE[i], mods)],
palette[2, match(drivers$MODULE[i], mods)],
palette[3, match(drivers$MODULE[i], mods)], collapse=" ")
## Process each module separately. Just perform for the 1st module:
i <- 1
rows <- which(drivers$MODULE == mods[i])
if(length(rows) > 0)
tmp <- kda2himmeli.exec(job.kda, valdata, drivers[rows,], mods, palette)
## remove the results folder
unlink("Results", recursive = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.