knitr::opts_chunk$set(collapse=TRUE)
In this vignette, we want to explore two pitfalls for machine learning analysis
that can lead to overly optimistic performance estimates.
When setting up cross-validation workflows, the main objective is usually to
estimate how well a trained model would perform on external data, which is
specifically important when considering biomarker discovery. However, more
complex workflows involving feature selection or time-course data can be
challenging to setup correctly. Incorrect workflows in which information leaks
from the test to the training data can lead to overfitting and poor
generalization to external datasets.
Here, we focus on supervised feature selection and the naive splitting of
dependent data.
First, we load the packages needed to perform the analyses.
library("tidyverse") library("SIAMCAT")
Supervised feature selection means that the label information is taken into
account before the cross-validation split. Within this procedure, the features
are selected if they are associated with the label (for example after
differential abundance testing), using the complete dataset for the calculation
of feature association and leaving no data aside for unbiased model
evaluation.
A correct way to perform feature selection would be to nest the selection step
into the cross-validation procedure. That means that the calculation of
feature association is performed for each training fold separately.
As an example, we are going to use two datasets of colorectal cancer (CRC)
which are available through the curatedMetagenomicData
package.
Since the model trainig procedure takes a long time, this vignette is not
evaluated upon build of the package, but if you execute the code chunks for
yourself, you should get similar results.
library("curatedMetagenomicData")
First, we are going to load the dataset from Thomas et al as training dataset.
x <- 'ThomasAM_2018a.metaphlan_bugs_list.stool' feat.t <- curatedMetagenomicData(x=x, dryrun=FALSE) feat.t <- feat.t[[x]]@assayData$exprs # clean up metaphlan profiles to contain only species-level abundances feat.t <- feat.t[grep(x=rownames(feat.t), pattern='s__'),] feat.t <- feat.t[grep(x=rownames(feat.t),pattern='t__', invert = TRUE),] stopifnot(all(colSums(feat.t) != 0)) feat.t <- t(t(feat.t)/100)
As an external dataset, we are going to use the data from Zeller et al..
x <- 'ZellerG_2014.metaphlan_bugs_list.stool' feat.z <- curatedMetagenomicData(x=x, dryrun=FALSE) feat.z <- feat.z[[x]]@assayData$exprs # clean up metaphlan profiles to contain only species-level abundances feat.z <- feat.z[grep(x=rownames(feat.z), pattern='s__'),] feat.z <- feat.z[grep(x=rownames(feat.z),pattern='t__', invert = TRUE),] stopifnot(all(colSums(feat.z) != 0)) feat.z <- t(t(feat.z)/100)
We can also extract the corresponding metadata from the combined_metadata
object which is part of the curatedMetagenomicData
package.
meta.t <- combined_metadata %>% filter(dataset_name == 'ThomasAM_2018a') %>% filter(study_condition %in% c('control', 'CRC')) rownames(meta.t) <- meta.t$sampleID meta.z <- combined_metadata %>% filter(dataset_name == 'ZellerG_2014') %>% filter(study_condition %in% c('control', 'CRC')) rownames(meta.z) <- meta.z$sampleID
The MetaPhlAn2 profiler used for the profiles outputs only species which are
present in the dataset. Therefore, we can have the case that there are species
in the matrix for ThomasAM_2018
which are not present in the matrix for
ZellerG_2014
and vice verse. In order to use them as training and external
test set for SIAMCAT
, we have to first make sure that the set of
features for both datasets overlap completely (see also the Holdout Testing
with SIAMCAT vignette).
species.union <- union(rownames(feat.t), rownames(feat.z)) # add Zeller_2014-only species to the Thomas_2018 matrix add.species <- setdiff(species.union, rownames(feat.t)) feat.t <- rbind(feat.t, matrix(0, nrow=length(add.species), ncol=ncol(feat.t), dimnames = list(add.species, colnames(feat.t)))) # add Thomas_2018-only species to the Zeller_2014 matrix add.species <- setdiff(species.union, rownames(feat.z)) feat.z <- rbind(feat.z, matrix(0, nrow=length(add.species), ncol=ncol(feat.z), dimnames = list(add.species, colnames(feat.z))))
Now, we are ready to start the model training process. For this, we chose three different feature selection cutoffs and prepare a tibble to hold the results:
fs.cutoff <- c(20, 100, 250) auroc.all <- tibble(cutoff=character(0), type=character(0), study.test=character(0), AUC=double(0))
First, we will train a model without any feature selection, using all the
available features. We add it to the results matrix twice (both with correct
and incorrect
) for easier plotting later.
sc.obj.t <- siamcat(feat=feat.t, meta=meta.t, label='study_condition', case='CRC') sc.obj.t <- filter.features(sc.obj.t, filter.method = 'prevalence', cutoff = 0.01) sc.obj.t <- normalize.features(sc.obj.t, norm.method = 'log.std', norm.param=list(log.n0=1e-05, sd.min.q=0)) sc.obj.t <- create.data.split(sc.obj.t, num.folds = 10, num.resample = 10) sc.obj.t <- train.model(sc.obj.t, method='lasso') sc.obj.t <- make.predictions(sc.obj.t) sc.obj.t <- evaluate.predictions(sc.obj.t) auroc.all <- auroc.all %>% add_row(cutoff='full', type='correct', study.test='Thomas_2018', AUC=as.numeric(sc.obj.t@eval_data$auroc)) %>% add_row(cutoff='full', type='incorrect', study.test='Thomas_2018', AUC=as.numeric(sc.obj.t@eval_data$auroc))
We then also apply the model to the external dataset and record the generalization to another dataset:
sc.obj.z <- siamcat(feat=feat.z, meta=meta.z, label='study_condition', case='CRC') sc.obj.z <- make.predictions(sc.obj.t, sc.obj.z) sc.obj.z <- evaluate.predictions(sc.obj.z) auroc.all <- auroc.all %>% add_row(cutoff='full', type='correct', study.test='Zeller_2014', AUC=as.numeric(sc.obj.z@eval_data$auroc)) %>% add_row(cutoff='full', type='incorrect', study.test='Zeller_2014', AUC=as.numeric(sc.obj.z@eval_data$auroc))
For the incorrect feature selection procedure, we can test the features for differential abundance, using the complete dataset, and then chose the top associated features.
sc.obj.t <- check.associations(sc.obj.t, detect.lim = 1e-05, fn.plot = 'assoc_plot.pdf') mat.assoc <- associations(sc.obj.t) mat.assoc$species <- rownames(mat.assoc) # sort by p-value mat.assoc <- mat.assoc %>% as_tibble() %>% arrange(p.val)
Based on the P values from the check.association
function, we now
chose X
number of features on which to train the model.
for (x in fs.cutoff){ # select x number of features based on p-value ranking feat.train.red <- feat.t[mat.assoc %>% slice(seq_len(x)) %>% pull(species),] sc.obj.t.fs <- siamcat(feat=feat.train.red, meta=meta.t, label='study_condition', case='CRC') # normalize the features without filtering sc.obj.t.fs <- normalize.features(sc.obj.t.fs, norm.method = 'log.std', norm.param=list(log.n0=1e-05,sd.min.q=0),feature.type = 'original') # take the same cross validation split as before data_split(sc.obj.t.fs) <- data_split(sc.obj.t) # train sc.obj.t.fs <- train.model(sc.obj.t.fs, method = 'lasso') # make predictions sc.obj.t.fs <- make.predictions(sc.obj.t.fs) # evaluate predictions and record the result sc.obj.t.fs <- evaluate.predictions(sc.obj.t.fs) auroc.all <- auroc.all %>% add_row(cutoff=as.character(x), type='incorrect', study.test='Thomas_2018', AUC=as.numeric(sc.obj.t.fs@eval_data$auroc)) # apply to the external dataset and record the result sc.obj.z <- siamcat(feat=feat.z, meta=meta.z, label='study_condition', case='CRC') sc.obj.z <- make.predictions(sc.obj.t.fs, sc.obj.z) sc.obj.z <- evaluate.predictions(sc.obj.z) auroc.all <- auroc.all %>% add_row(cutoff=as.character(x), type='incorrect', study.test='Zeller_2014', AUC=as.numeric(sc.obj.z@eval_data$auroc)) }
Feature selection can be performed correctly if it is nested within the
cross-validation procedure. We can do it using SIAMCAT
by specifying the
perform.fs
parameter in the train.model
function.
for (x in fs.cutoff){ # train using the original SIAMCAT object # with correct version of feature selection sc.obj.t.fs <- train.model(sc.obj.t, method = 'lasso', perform.fs = TRUE, param.fs = list(thres.fs = x,method.fs = "AUC",direction='absolute')) # make predictions sc.obj.t.fs <- make.predictions(sc.obj.t.fs) # evaluate predictions and record the result sc.obj.t.fs <- evaluate.predictions(sc.obj.t.fs) auroc.all <- auroc.all %>% add_row(cutoff=as.character(x), type='correct', study.test='Thomas_2018', AUC=as.numeric(sc.obj.t.fs@eval_data$auroc)) # apply to the external dataset and record the result sc.obj.z <- siamcat(feat=feat.z, meta=meta.z, label='study_condition', case='CRC') sc.obj.z <- make.predictions(sc.obj.t.fs, sc.obj.z) sc.obj.z <- evaluate.predictions(sc.obj.z) auroc.all <- auroc.all %>% add_row(cutoff=as.character(x), type='correct', study.test='Zeller_2014', AUC=as.numeric(sc.obj.z@eval_data$auroc)) }
Now, we can plot the resulting performance estimates for the cross-validation and the external validation as well:
auroc.all <- tibble( cutoff=rep(rep(c('20', '100', '250', 'full'), each=2), 2), type=rep(c('incorrect', 'correct'), 8), study.test=rep(c('Thomas_2018', 'Zeller_2014'), each=8), AUC=c(0.809, 0.608, 0.812, 0.659, 0.727, 0.678, 0.677, 0.677, 0.620, 0.688, 0.694, 0.732, 0.737, 0.737, 0.736, 0.736))
auroc.all %>% # facetting for plotting mutate(split=case_when(study.test=="Thomas_2018"~ 'Cross validation (Thomas 2018)', TRUE~"External validation (Zeller 2014)")) %>% # convert to factor to enforce ordering mutate(cutoff=factor(cutoff, levels = c(fs.cutoff, 'full'))) %>% ggplot(aes(x=cutoff, y=AUC, col=type)) + geom_point() + geom_line(aes(group=type)) + facet_grid(~split) + scale_y_continuous(limits = c(0.5, 1), expand = c(0,0)) + xlab('Features selected') + ylab('AUROC') + theme_bw() + scale_colour_manual(values = c('correct'='blue', 'incorrect'='red'), name='Feature selection procedure') + theme(panel.grid.minor = element_blank(), legend.position = 'bottom')
As you can see, the incorrect feature selection procedure leads to inflated AUROC values but lower generalization to a truly external dataset, especially when very few features were selected. In contrast, the correct procedure gives a lower cross-validation results but a better estimation for how the model would perform on external data.
Another issue in machine learning workflows can occur when samples are not
independent. For example, microbiome samples taken from the same individual
at different time points are usually more similar to each other than to samples
from other individuals. If these samples are split randomly in a naive
cross-validation procedure, the case could arise that samples from the same
individual will end up in the training and the test fold. In this case, the
model would learn to generalize across time-points for the same individual
compared to the desired model that should learn to distinguish the label
across individuals.
To avoid this issue, dependent measurements need to be blocked during
cross-validation, to ensure that samples within the same block will stay in the
same fold (for training and testing).
As an example, we are going to use several datasets of Crohn's disease (CD)
which are available through the EMBL cluster. The data have already been
filtered and cleaned.
Since the model training would take again quite a long time, this part of the
vignette is not evaluated upon building of the package, but you should be
able to execute it yourself.
data.loc <- 'https://zenodo.org/api/files/d81e429c-870f-44e0-a44a-2a4aa541b6c1/' # metadata meta.all <- read_tsv(paste0(data.loc, 'meta_all_cd.tsv')) # features feat.motus <- read.table(paste0(data.loc, 'feat_rel_filt_cd.tsv'), sep='\t', stringsAsFactors = FALSE, check.names = FALSE)
When we look at the number of samples and number of individuals, we see that
that there are several samples per individual for example in the HMP2
study.
x <- meta.all %>% group_by(Study, Group) %>% summarise(n.all=n(), .groups='drop') y <- meta.all %>% select(Study, Group, Individual_ID) %>% distinct() %>% group_by(Study, Group) %>% summarize(n.indi=n(), .groups='drop') full_join(x,y)
Therefore, we are going to train a model on the HMP2
study. However, the
number of samples per individual varies quite a lot across samples, therefore
we want to randomly select a set of 5 samples per individual:
meta.all %>% filter(Study=='HMP2') %>% group_by(Individual_ID) %>% summarise(n=n(), .groups='drop') %>% pull(n) %>% hist(20) # sample 5 samples per individual meta.train <- meta.all %>% filter(Study=='HMP2') %>% group_by(Individual_ID) %>% sample_n(5, replace = TRUE) %>% distinct() %>% as.data.frame() rownames(meta.train) <- meta.train$Sample_ID
For evaluation, we only want a single sample per individual, therefore we can create a new matrix removing repeated samples for the other studies:
meta.ind <- meta.all %>% group_by(Individual_ID) %>% filter(Timepoint==min(Timepoint)) %>% ungroup()
Lastly, we can already create a tibble to hold the resulting AUROC values:
auroc.all <- tibble(type=character(0), study.test=character(0), AUC=double(0))
The naive way to split samples for cross-validation does not take into account the dependency between samples. Therefore, the pipeline would look basically like this:
sc.obj <- siamcat(feat=feat.motus, meta=meta.train, label='Group', case='CD') sc.obj <- normalize.features(sc.obj, norm.method = 'log.std', norm.param=list(log.n0=1e-05,sd.min.q=1),feature.type = 'original') sc.obj.naive <- create.data.split(sc.obj, num.folds = 10, num.resample = 10) sc.obj.naive <- train.model(sc.obj.naive, method='lasso') sc.obj.naive <- make.predictions(sc.obj.naive) sc.obj.naive <- evaluate.predictions(sc.obj.naive) auroc.all <- auroc.all %>% add_row(type='naive', study.test='HMP2', AUC=as.numeric(eval_data(sc.obj.naive)$auroc))
The correct way to to take into account repeated samples would be to block
the cross-validation procedure by individuals. This way, samples from the same
individual will always end up in the same fold. This can be performed in
SIAMCAT
by specifying the inseparable
parameter in the create.data.split
function:
sc.obj.block <- create.data.split(sc.obj, num.folds = 10, num.resample = 10, inseparable = 'Individual_ID') sc.obj.block <- train.model(sc.obj.block, method='lasso') sc.obj.block <- make.predictions(sc.obj.block) sc.obj.block <- evaluate.predictions(sc.obj.block) auroc.all <- auroc.all %>% add_row(type='blocked', study.test='HMP2', AUC=as.numeric(eval_data(sc.obj.block)$auroc))
Now, we can apply both models to external datasets and record the resulting accuracy:
for (i in setdiff(unique(meta.all$Study), 'HMP2')){ meta.test <- meta.ind %>% filter(Study==i) %>% as.data.frame() rownames(meta.test) <- meta.test$Sample_ID # apply naive model sc.obj.test <- siamcat(feat=feat.motus, meta=meta.test, label='Group', case='CD') sc.obj.test <- make.predictions(sc.obj.naive, sc.obj.test) sc.obj.test <- evaluate.predictions(sc.obj.test) auroc.all <- auroc.all %>% add_row(type='naive', study.test=i, AUC=as.numeric(eval_data(sc.obj.test)$auroc)) # apply blocked model sc.obj.test <- siamcat(feat=feat.motus, meta=meta.test, label='Group', case='CD') sc.obj.test <- make.predictions(sc.obj.block, sc.obj.test) sc.obj.test <- evaluate.predictions(sc.obj.test) auroc.all <- auroc.all %>% add_row(type='blocked', study.test=i, AUC=as.numeric(eval_data(sc.obj.test)$auroc)) }
Now, we can compare the resulting AUROC values between the two different approaches:
auroc.all <- tibble( type=rep(c('naive', 'blocked'), 5), study.test=(rep(c('metaHIT', 'Lewis_2015', 'He_2017', 'Franzosa_2019', 'HMP2'), each=2)), AUC=c(0.77, 0.82, 0.80, 0.82, 0.788, 0.855, 0.739, 0.774, 0.988, 0.667))
auroc.all %>% # convert to factor to enforce ordering mutate(type=factor(type, levels = c('naive', 'blocked'))) %>% # facetting for plotting mutate(CV=case_when(study.test=='HMP2'~'CV', TRUE~'External validation')) %>% ggplot(aes(x=study.test, y=AUC, fill=type)) + geom_bar(stat='identity', position = position_dodge(), col='black') + theme_bw() + coord_cartesian(ylim=c(0.5, 1)) + scale_fill_manual(values=c('red', 'blue'), name='') + facet_grid(~CV, space = 'free', scales = 'free') + xlab('') + ylab('AUROC') + theme(legend.position = c(0.8, 0.8))
As you can see, the naive cross-validation procedure leads to a inflated performance estimation compared to the blocked cross-validation. However, when assessing generalization to truly external datasets, the blocked procedure results in better performance.
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.