R/Valiation.R

Defines functions silhouette_SimilarityMatrix survAnalysis drawHeatmap saveFigure sigclustTest DiffExp.limma

Documented in DiffExp.limma drawHeatmap saveFigure sigclustTest silhouette_SimilarityMatrix survAnalysis

#'Compute or Extract Silhouette Information from Clustering based on similarity matrix.
#'
#'Silhouette refers to a method of interpretation and validation of consistency within clusters of data. 
#'The technique provides a succinct graphical representation of how well each object lies within its cluster (From Wiki).\cr
#'Note that: This function is a rewriting version of the function "silhouette()" in R package cluster.
#'   The original function "silhouette()" is to compute the silhouette information based on a dissimilarity matrix.
#'   Here the silhouette_SimilarityMatrix() is to solve the computation based on the similarity matrix.
#'   The result of the silhouette_SimilarityMatrix() is compatible to the function "Silhouette()".


#'
#'@param group A vector represent the cluster label for a set of samples.
#'@param similarity_matrix A similarity matrix between samples
#'@return 
#' An object, sil, of class silhouette which is an [n x 3] matrix with
#' attributes. The colnames correspondingly are c("cluster", "neighbor", "sil_width").
#' @details
#' For each observation i, the return sil[i,] contains the cluster to which i belongs as well as the neighbor 
#' cluster of i (the cluster, not containing i, for which the average 
#' dissimilarity between its observations and i is minimal), 
#' and the silhouette width s(i) of the observation. 
#' @examples
#' data(GeneExp)
#' data(miRNAExp)
#' GBM=list(GeneExp=GeneExp,miRNAExp=miRNAExp)
#' result=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
#' sil=silhouette_SimilarityMatrix(result$group, result$distanceMatrix)
#' plot(sil)
#' ###If use the silhouette(), the result is wrong because the input is a similarity matrix.
#' sil1=silhouette(result$group, result$distanceMatrix)
#' plot(sil1)  ##wrong result
#' 
#' @seealso \code{\link{silhouette}}
#' @author
#'  Xu,Taosheng \email{taosheng.x@@gmail.com},Thuc Le \email{Thuc.Le@@unisa.edu.au}
#'  
#'@references
#' Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53-65.
#'@export
#'
silhouette_SimilarityMatrix<-function(group, similarity_matrix)
{
  similarity_matrix=as.matrix(similarity_matrix)
  similarity_matrix<-(similarity_matrix+t(similarity_matrix))/2
  diag(similarity_matrix)=0
  normalize <- function(X) X / rowSums(X)
  similarity_matrix<-normalize(similarity_matrix)
  
  n <- length(group)
  if(!all(group == round(group))) stop("'group' must only have integer codes")
  cluster_id <- sort(unique(group <- as.integer(group)))
  k <- length(cluster_id)
  if(k <= 1 || k >= n)
    return(NA)
  doRecode <- (any(cluster_id < 1) || any(cluster_id > k))
  if(doRecode)
    group <- as.integer(fgroup <- factor(group))
  cluster_id <- sort(unique(group))
  
  wds <- matrix(NA, n,3, dimnames =list(names(group), c("cluster","neighbor","sil_width")))  
  for(j in 1:k)
  { 
    index <- (group == cluster_id[j])
    Nj <- sum(index)
    wds[index, "cluster"] <- cluster_id[j]
    dindex <- rbind(apply(similarity_matrix[!index, index, drop = FALSE], 2,
                          function(r) tapply(r, group[!index], mean)))
    maxC <- apply(dindex, 2, which.max)
    wds[index,"neighbor"] <- cluster_id[-j][maxC]
    s.i <- if(Nj > 1) {
      a.i <- colSums(similarity_matrix[index, index])/(Nj - 1)
      b.i <- dindex[cbind(maxC, seq(along = maxC))]
      ifelse(a.i != b.i, (a.i - b.i) / pmax(b.i, a.i), 0)
    } else 0
    wds[index,"sil_width"] <- s.i
  }
  attr(wds, "Ordered") <- FALSE
  class(wds) <- "silhouette"
  wds
}


#' Survival analysis(Survival curves, Log-rank test) and compute Silhouette information for cancer subtypes
#' 
#' Survival analysis is a very common tool to explain and validate the cancer subtype identification result. It provides the significance testing and 
#' graphical display for the verification of the survival patterns between the identified cancer subtypes.
#' 
#' @importFrom survival survfit survdiff
#' @importFrom NMF consensusmap
#' @importFrom cluster silhouette
#'
#' @param mainTitle A character will display in the result plot.
#' @param time A numeric vector representing the survival time (days) of a set of samples.
#' @param status A numeric vector representing the survival status of a set of samples. 0=alive/censored, 1=dead.
#' @param group A vector represent the cluster label for a set of samples.
#' @param distanceMatrix A data matrix represents the similarity matrix or dissimilarity matrix between samples.\cr
#' If NULL, it will not compute silhouette width and draw the plot.
#' @param similarity A logical value. If TRUE, the distanceMatrix is a similarity distance matrix between samples. Otherwise a dissimilarity distance matrix between samples
#'
#' @return
#' The log-rank test p-value
#' @author
#'  Xu,Taosheng \email{taosheng.x@@gmail.com},Thuc Le \email{Thuc.Le@@unisa.edu.au}
#'@examples
#' data(GeneExp)
#' data(miRNAExp)
#' data(time)
#' data(status)
#' data1=FSbyCox(GeneExp,time,status,cutoff=0.05)
#' data2=FSbyCox(miRNAExp,time,status,cutoff=0.05)
#' GBM=list(GeneExp=data1,miRNAExp=data2)
#' 
#' ### SNF result analysis
#' result1=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
#' group1=result1$group
#' distanceMatrix1=result1$distanceMatrix
#' p_value1=survAnalysis(mainTitle="GBM_SNF",time,status,group1,
#'                      distanceMatrix=distanceMatrix1,similarity=TRUE)
#'                      
#' ### WSNF result analysis
#' data(Ranking)
#' ####Retrieve there feature ranking for genes
#' gene_Name=rownames(data1)
#' index1=match(gene_Name,Ranking$mRNA_TF_miRNA.v21_SYMBOL)
#' gene_ranking=data.frame(gene_Name,Ranking[index1,],stringsAsFactors=FALSE)
#' index2=which(is.na(gene_ranking$ranking_default))
#' gene_ranking$ranking_default[index2]=min(gene_ranking$ranking_default,na.rm =TRUE)
#' ####Retrieve there feature ranking for genes
#' miRNA_ID=rownames(data2)
#' index3=match(miRNA_ID,Ranking$mRNA_TF_miRNA_ID)
#' miRNA_ranking=data.frame(miRNA_ID,Ranking[index3,],stringsAsFactors=FALSE)
#' index4=which(is.na(miRNA_ranking$ranking_default))
#' miRNA_ranking$ranking_default[index4]=min(miRNA_ranking$ranking_default,na.rm =TRUE)
#' ###Clustering
#' ranking1=list(gene_ranking$ranking_default ,miRNA_ranking$ranking_default)
#' result2=ExecuteWSNF(datasets=GBM, feature_ranking=ranking1, beta = 0.8, clusterNum=3, 
#'                     K = 20,alpha = 0.5, t = 20, plot = TRUE)
#' group2=result2$group
#' distanceMatrix2=result2$distanceMatrix
#' p_value2=survAnalysis(mainTitle="GBM_WSNF",time,status,group2,
#'                      distanceMatrix=distanceMatrix2,similarity=TRUE)
#'
#' @export
#'
survAnalysis<-function(mainTitle="Survival Analysis",time,status,group,distanceMatrix=NULL,similarity=TRUE)
{
  
  clusterNum=length(unique(group))
  dataset=list(time,status,x=group)  
  surv=survfit(Surv(time, status) ~ x,dataset)
  if(clusterNum>1)
  {
    sdf=NULL
    sdf=survdiff(Surv(time, status) ~ group)##log-rank test
    cat("                                                     \n")
    cat("*****************************************************\n")
    cat(paste(mainTitle,"Cluster=",clusterNum,"  "))
    print(sdf)
    p_value=1 - pchisq(sdf$chisq, length(sdf$n) - 1)
  }
  else
  {
    cat("There is only one cluster in the group")
    p_value=1
  }
  
  if(!is.null(distanceMatrix[1,1]))
  {
    layout(matrix(c(1,2,3,3), 2, 2, byrow = FALSE),widths=c(2.2,2), heights=c(2,2))
  }
  title=paste(mainTitle,"Cluster =",clusterNum)
  plot(surv, lty = 1,col=2:(clusterNum+1),lwd=2,xscale=30,xlab="Survival time (Months)", ylab="Survival probability",
       main= title,font.main=4,cex.main=0.9)
  
  legend(x=par("usr")[2]*0.6,y=par("usr")[4]*0.95,x.intersp=0.05,y.intersp=0.3, paste("Subtpye", 1:clusterNum),
         lty=1,lwd=3, cex=0.8,text.font=4,text.col=2:(clusterNum+1), bty="n",col=2:(clusterNum+1),
         seg.len = 0.3)
  
  digit=ceiling(-log10(p_value)+2)
  text(x=par("usr")[2]*0.6,y=par("usr")[4]*0.9,paste("p-value=",round(p_value,digit)),col="red",font=3,cex=1)   
  
  if(!is.null(distanceMatrix[1,1]))
  {
    #####
    if(class(distanceMatrix)=="Similarity")
    {
      si=silhouette_SimilarityMatrix(group,distanceMatrix)
    }
    else
    {
      si=silhouette(group,distanceMatrix)
    }
     
    attr(distanceMatrix,'class')=NULL
    
    ind=order(group,-si[, "sil_width"])
    
    num=length(unique(group))
    annotation=data.frame(group=as.factor(group))
    Var1 = c(palette()[2:(num+1)])
    names(Var1) = sort(unique(group))
    ann_colors =  list(group=Var1)
    
    consensusmap(distanceMatrix,Rowv=ind,Colv=ind,main = "Clustering display",
                 annCol = annotation,annColors=ann_colors,
                 labRow ="Sample", labCol = "Sample",scale="none")
    
    plot(si,col =2:(clusterNum+1))
  }
  par(mfrow=c(1,1))
  p_value
}


#' Generate heatmaps
#' 
#' Generate heatmap for datasets.
#' @importFrom NMF aheatmap
#' @importFrom grDevices bitmap colorRampPalette dev.copy dev.off palette pdf png postscript rainbow rgb
#' @param data A matrix representing the genomic data such as gene expression data, miRNA expression data.\cr
#' For the matrix, the rows represent the genomic features, and the columns represent the samples.
#' @param group A vector representing the subtype on each sample.  The default is NULL. If it is not
#' NULL, the samples will be rearrangement according to the subtypes in the heatmap.
#' @param silhouette An object of class silhouette. It is a result from function 
#' silhouette() or silhouette_SimilarityMatrix(). The default is NULL. If it is not NULL,  an annotation will be drawn to show the silhouette width for each sample.
#' @param scale A string for data normalization type before heatmap drawing.
#' The optional values are shown below:
#' \itemize{
#' \item "no". No normalization. This is default.
#' \item "z_score". Normalize data by z_score of features. 
#' \item "max_min". Normalize each feature by (value-min)/(max-min).
#' }
#' @param labRow labels for the rows. Possible values are:
#' \itemize{
#' \item NULL. The default value. It will use the row names of the matrix for the heatmap labels.
#' \item NA. No row label will be shown. 
#' \item A list of labels.
#' }
#' @param labCol labels for the columns.  See labRow.
#' @param color color specification for the heatmap.
#' @param Title A string for the Main title of the heatmap.
#' @details 
#' We applied the R package "NMF" function "aheatmap()" as the heatmap drawer.
#' @author
#' Xu,Taosheng \email{taosheng.x@@gmail.com},Thuc Le \email{Thuc.Le@@unisa.edu.au}
#' @references 
#' Gaujoux, Renaud, and Cathal Seoighe. "A flexible R package for nonnegative matrix factorization." BMC bioinformatics 11.1 (2010): 1.
#' @return 
#' A heatmap
#' @examples 
#' ### SNF result analysis
#' data(GeneExp)
#' data(miRNAExp)
#' data(time)
#' data(status)
#' GBM=list(GeneExp=GeneExp,miRNAExp=miRNAExp)
#' result=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
#' group=result$group
#' distanceMatrix=result$distanceMatrix
#' silhouette=silhouette_SimilarityMatrix(group, distanceMatrix)
#' drawHeatmap(GeneExp,group,silhouette=silhouette,scale="max_min",Title="GBM Gene Expression")
#' drawHeatmap(GeneExp,group,silhouette=silhouette,scale="max_min",
#'             color="-RdYlBu",Title="GBM Gene Expression")
#' @export
#' 
drawHeatmap<-function(data,group=NULL,silhouette=NULL,scale="no",
                      labRow = NULL, labCol = NULL,
                      color=colorRampPalette(c("green","black","red"))(300),
                      Title=NA)
{
  if(!is.matrix(data))
    stop("The input dataset is not a matrix")
  if(scale=="z_score")
  {
    data1=data.normalization(data, type = "feature_zsocre")
  }
  else if(scale=="max_min")
  {
    data1=t(apply(data,1,function(x) (x-min(x))/(max(x)-min(x))))
  }
  else
  {
    data1=data
  }
  
  num=length(unique(group))
  
  if(!is.null(group))
  {
    if(!is.null(silhouette))
    {
      ind=order(group,-silhouette[, "sil_width"])
      annotation=data.frame(gruop=as.factor(group),silhouette=silhouette[, "sil_width"])
      
      Var1 = c(palette()[2:(num+1)])
      names(Var1) = sort(unique(group))
      Var2 = c("deeppink", "yellow")
      
      ann_colors = list(Var1, Var2)
    }
    else
    {
      ind=order(group)
      annotation=annotation=data.frame(group=as.factor(group))
      
      Var1 = c(palette()[2:(num+1)])
      names(Var1) = sort(unique(group))
      ann_colors =  list(group=Var1)
    }
      
  }
  else
  {
    ind=NA
    annotation=NA
    ann_colors=NA
  }
    
  if(is.na(Title))
    Title="Heatmap"
  
  aheatmap(data1,Colv = ind,treeheight=0,labRow = labRow, labCol = labCol,color = color,
           annCol = annotation,annColors=ann_colors,main=Title)
  
  
}

#' This function save the figure in the current plot.
#' @param foldername Character values. It specifies the folder name which will be created in the present working path.
#' @param filename Character values. It specifies the saved file name.
#' @param image_width the figure width
#' @param image_height the figure height
#' @param image_res the figure resolution
#' 
#' @return A * .png file in the specified folder.
#' @author
#' Xu,Taosheng \email{taosheng.x@@gmail.com},Thuc Le \email{Thuc.Le@@unisa.edu.au}

#' @examples 
#' data(GeneExp)
#' data(miRNAExp)
#' data(time)
#' data(status)
#' GBM=list(GeneExp=GeneExp,miRNAExp=miRNAExp)
#' result=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
#' group=result$group
#' distanceMatrix=result$distanceMatrix
#' p_value=survAnalysis(mainTitle="GBM",time,status,group,
#'       distanceMatrix=distanceMatrix,similarity=TRUE)
#' saveFigure(foldername="GBM",filename="GBM",image_width=10,image_height=10,image_res=300)
#' @export
saveFigure<-function(foldername=NULL,filename="saveFig",image_width=10,image_height=10,image_res=300)
{
  mainDir<-getwd()
  filename1=paste(filename,".png",sep="")
  if(!is.null(foldername))
  {
    subDir=paste(foldername,"Figures")
    dir.create(file.path(mainDir, subDir), showWarnings = FALSE)
    path=file.path(mainDir, subDir,filename1)
  }
  else
    path=file.path(mainDir,filename1)  
  dev.copy(png,path,width=image_width,height=image_height,res=image_res,units="in")
  dev.off();
}

#' 
#'
#'
#' A statistical method for testing the significance of clustering results. 
#' 
#' SigClust (Statistical significance of clustering) is a statistical method for testing the significance of clustering results. SigClust can be applied to
#' assess the statistical significance of splitting a data set into two clusters. 
#' SigClust studies whether clusters are really there, using the 2-means (k = 2) clustering index as a statistic. It assesses the significance of clustering by 
#' simulation from a single null Gaussian distribution. Null Gaussian parameters are estimated from the data.
#' Here we apply the SigClust to assess the statistical significance of pairwise subtypes. "sigclust" package should be installed.
#' @importFrom sigclust sigclust
#' @param Data A data matrix representing the genomic data measured in a set of samples.
#' For the matrix, the rows represent the genomic features, and the columns represents the samples.
#' @param group The subtypes label of each sample
#' @param nsim This is a parameter inherited from sigclust() in "sigclust" Package. 
#' Number of simulated Gaussian samples to estimate the distribution of the clustering index for the main p-value computation.
#' @param nrep This is a parameter inherited from sigclust() in "sigclust" Package. 
#' Number of steps to use in 2-means clustering computations (default=1, chosen to optimize speed).
#' @param icovest This is a parameter inherited from sigclust() in "sigclust" Package.
#' Covariance estimation type: 1. Use a soft threshold method as constrained MLE (default); 
#' 2. Use sample covariance estimate (recommended when diagnostics fail); 3. Use original background noise threshold estimate (from Liu, et al, (2008)) ("hard thresholding").
#' @return 
#' A matrix indicates the p-value between pairwise subtypes.
#' @references 
#' Liu, Yufeng, Hayes, David Neil, Nobel, Andrew and Marron, J. S, 2008, Statistical Significance of Clustering for High-Dimension, Low-Sample Size Data, Journal of the American Statistical Association 103(483) 1281-1293.\cr
#' Huang, Hanwen, Yufeng Liu, Ming Yuan, and J. S. Marron. "Statistical Significance of Clustering Using Soft Thresholding." Journal of Computational and Graphical Statistics, no. just-accepted (2014): 00-00.
#' @seealso \code{\link{sigclust}}
#' @author
#' Xu,Taosheng \email{taosheng.x@@gmail.com},Thuc Le \email{Thuc.Le@@unisa.edu.au}

#' @examples 
#' data(GeneExp)
#' data(miRNAExp)
#' data(time)
#' data(status)
#' GBM=list(GeneExp=GeneExp,miRNAExp=miRNAExp)
#' result=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
#' group=result$group
#' sigclust1=sigclustTest(miRNAExp,group, nsim=500, nrep=1, icovest=3)
#' sigclust2=sigclustTest(miRNAExp,group, nsim=1000, nrep=1, icovest=1)
#' @export
sigclustTest<-function(Data,group, nsim=1000, nrep=1, icovest=1)
{
  groupN=sort(unique(group))
  len=length(groupN)
  pvalue=matrix(data = NA, nrow =len , ncol = len)
  name=paste("Subtype",groupN)
  rownames(pvalue)=name
  colnames(pvalue)=name
  
  group_temp=sort(group,index.return = TRUE)
  data=t(Data[,group_temp$ix])
  group_temp=group_temp$x
  
  for(i in 1: (len-1))
  {
    for(j in (i+1): len)
    {
      index=which(group_temp==groupN[i] | group_temp==groupN[j])
      data1=data[index,]
      label=group_temp[index]
      label[which(label == min(label))]=1
      label[which(label == max(label))]=2 
      
      res<-sigclust(x=data1, nsim=nsim, nrep=nrep, labflag=1, label=label, icovest=icovest)
      
      plot(res,arg="pvalue",sub=paste("subtype",groupN[i],"and","subtype",groupN[j]))
      pvalue[i,j]=res@pval
      pvalue[j,i]=res@pval
    }
  }
  diag(pvalue)=1
  pvalue
}


#' DiffExp.limma
#' 
#' Differently Expression Analysis for genomic data. We apply limma package to conduct the analysis.
#' @importFrom limma lmFit eBayes makeContrasts contrasts.fit voom topTable
#' @param Tumor_Data A matrix representing the genomic data of cancer samples such as gene expression data, miRNA expression data.\cr
#' For the matrix, the rows represent the genomic features, and the columns represent the cancer samples.
#' @param Normal_Data A matrix representing the genomic data of Normal samples.\cr
#' For the matrix, the rows represent the genomic features corresponding to the Tumor_Data, and the columns represent the normal samples.
#' @param group A vector representing the subtype of each tumor sample in the Tumor_Data. The length of group is equal to the column number of Tumor_Data.  
#' @param topk The top number of different expression features that we want to extract in the return result.
#' @param sort.by This is a parmeter of "topTable() in limma pacakge". "Character string specifying statistic to rank genes by. Possible values for topTable and toptable are "logFC", "AveExpr", "t", "P", "p", "B" or "none". (Permitted synonyms are "M" for "logFC", "A" or "Amean" for "AveExpr", "T" for "t" and "p" for "P".) Possibilities for topTableF are "F" or "none". Possibilities for topTreat are as for topTable except for "B"."
#' @param adjust.method This is a parmeter of "topTable() in limma pacakge".  Refer to the "method used to adjust the p-values for multiple testing. Options, in increasing conservatism, include "none", "BH", "BY" and "holm". See p.adjust for the complete list of options. A NULL value will result in the default adjustment method, which is "BH"."                              
#' @param RNAseq A bool type representing the input datatype is a RNASeq or not. Default is FALSE for microarray data.
#' @return 
#' A list representing the differently expression for each subtype comparing to the Normal group.
#' @examples 
#' data(GeneExp)
#' data(miRNAExp)
#' GBM=list(GeneExp=GeneExp,miRNAExp=miRNAExp)
#' result=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
#' group=result$group
#' ######Fabricate a normal group by extracting some samples from the cancer dataset 
#' ######for demonstrating the examples.
#' Normal_Data=GeneExp[,sample(1:100,20)]
#' result=DiffExp.limma(Tumor_Data=GeneExp,Normal_Data=Normal_Data,group=group,topk=NULL,RNAseq=FALSE)

#' @author
#' Xu,Taosheng \email{taosheng.x@@gmail.com},Thuc Le \email{Thuc.Le@@unisa.edu.au}
#' @references 
#' Smyth, Gordon K. "Limma: linear models for microarray data." Bioinformatics and computational biology solutions using R and Bioconductor. 
#' Springer New York, 2005. 397-420.
#' @export

DiffExp.limma<-function(Tumor_Data,Normal_Data,group=NULL,topk=NULL,sort.by="p", adjust.method="BH",RNAseq=FALSE)
{ 
  if(is.null(group))
    group=rep(1,ncol(Tumor_Data))
  groupN=sort(unique(group))
  len=length(groupN)
  
  mylist.names <- paste("Subtype",order(groupN))
  result <- vector("list", length(mylist.names))
  names(result) <- mylist.names
  
  num=ncol(Normal_Data)
  for(i in 1:len)
  {
    index=which(group==groupN[i])
    #label=c(rep(0,num),rep(1,length(index)))
    #label=as.factor(label)
    #design <- model.matrix(~-1+label)
    #colnames(design)=c("Normal","Cancer")
    
    Normal=NULL
    Cancer=NULL
    design=cbind(Normal=c(rep(1,num), rep(0,length(index))), Cancer=c(rep(0,num), rep(1,length(index))))
    
    Data=cbind(Normal_Data,Tumor_Data[,index])
    if(RNAseq)
      mR <- voom(Data, design, plot=TRUE)
    else
      mR=Data
    
    ###In order to return the index of features, set the same name for two feautre
    ### then restore the name
    name1=rownames(mR)[1]
    name2=rownames(mR)[2]
    rownames(mR)[1]="repeat"
    rownames(mR)[2]="repeat" 
    ########## mR ############
    mRfit=lmFit(mR, design)
    mRfit=eBayes(mRfit)
    contrast.matrix=makeContrasts(CancervNormal=Cancer - Normal, levels=design)
    mRfit2=contrasts.fit(mRfit, contrast.matrix)
    mRfit2=eBayes(mRfit2)
    
    if(is.null(topk))
    {
      topk=nrow(mR)
    }
    mRresults=topTable(mRfit2, number= topk, sort.by=sort.by, adjust.method=adjust.method)
    ######restore feature name
    mRresults[which(rownames(mRresults)=="1"),1]=name1
    mRresults[which(rownames(mRresults)=="2"),1]=name2
    
    result[[i]]=mRresults
  }
  result
}
xtsvm/CancerSubtypes documentation built on May 4, 2019, 1:26 p.m.