list_ok <- list()
a=c(1,2,3,4,5)
b=c(6,7,8,9,10)
c=c(11,12,13,14,15)
d=c(16, 17, 18, 19, 20)
e=c(21,22,23,24,25)
list_ok[[1]]=a
list_ok[[2]]=b
list_ok[[3]]=c
list_ok[[4]]=d
list_ok[[5]]=e
new_list <- vector(mode = "list", length=5)
for (i in 1:5) {
for(k in 1:5) {
new_list[[i]][k] <- list_ok[[i]][k]
}
}
new_list
library(purrr)
map(list_ok, function(x)
map_dbl(seq_along(list_ok), function(y) x[[y]])
)
DEG_df_g <- cut_much(DEG_df,x = "log2FoldChange",y = "pvalue",cut_FC = 2,cut_P = 0.01)
gene_list <- list(
Up = row.names(DEG_df_g[which(DEG_df_g$group == "Up"),]),
Down = row.names(DEG_df_g[which(DEG_df_g$group == "Down"),])
)
DEG_df_g <- cut_much(DEG_df,x = "log2FoldChange",y = "pvalue",cut_FC = 2,cut_P = 0.01)
ll <- DEG_df_g[which(DEG_df_g$group %in% c("Up","Down")),]
ont = c("BP","CC","MF","ALL")
ego <- map(gene_list,function(x)
enhance_enrichGO(gene =x, OrgDb = 'org.Hs.eg.db', keyType = "SYMBOL", ont="BP", pvalueCutoff=0.05)
)
GO_DATA <- enhance_get_GO_data(OrgDb = 'org.Hs.eg.db', ont = "ALL", keytype = "SYMBOL")
microbenchmark::microbenchmark(
test1 <- enhance_enricher_internal(gene = gene_list[[1]],
pvalueCutoff=0.05,
pAdjustMethod="BH",
universe = NULL,
qvalueCutoff = 0.2,
minGSSize = 10,
maxGSSize = 500,
USER_DATA = GO_DATA
),
test2 <- DOSE:::enricher_internal(
gene = gene_list[[1]],
pvalueCutoff=0.05,
pAdjustMethod="BH",
universe = NULL,
qvalueCutoff = 0.2,
minGSSize = 10,
maxGSSize = 500,
USER_DATA = GO_DATA
)
)
library(furrr)
plan(multisession, workers = 1)
tt <- enhance_enrichGO(gene =gene_list[[1]], OrgDb = 'org.Hs.eg.db',
keyType = "SYMBOL", ont="ALL", pvalueCutoff=0.05, simplify = TRUE)
tt2 <- enrichGO(gene =gene_list[[1]], OrgDb = 'org.Hs.eg.db', keyType = "SYMBOL", ont="ALL", pvalueCutoff=0.05)
lres <- furrr::future_map(c("BP", "CC", "MF"), function(ont)
suppressMessages(enhance_enrichGO(gene, OrgDb, keyType, ont,
pvalueCutoff, pAdjustMethod, universe,
qvalueCutoff, minGSSize, maxGSSize
)),.options = furrr_options(seed = TRUE)
)
lres2 <- lres[!vapply(lres, is.null, logical(1))]
lres3 <- furrr::future_map(lres2, function(x) clusterProfiler::simplify(x))
df <- do.call('rbind', future_map(lres, as.data.frame))
wt <- as.data.frame(lres[[1]])
data(geneList, package = "DOSE")
de <- names(geneList)[1:100]
library(furrr)
plan(multisession, workers = 1)
# create cluster object
cl <- makeCluster(3)
# test each number in sample_numbers for primality
microbenchmark::microbenchmark(
ego <- map(gene_list,function(x)
RNAseqStat::enhance_enrichGO(gene =x, OrgDb = 'org.Hs.eg.db', keyType = "SYMBOL", ont="CC", pvalueCutoff=0.05)
),
# yy1 <- enrichGO(de, 'org.Hs.eg.db', ont="BP", pvalueCutoff=0.01),
ego2 <- furrr::future_map(gene_list,function(x)
RNAseqStat::enhance_enrichGO(gene =x, OrgDb = 'org.Hs.eg.db', keyType = "SYMBOL", ont="CC", pvalueCutoff=0.05)
),
ego3 <- parLapply(cl,gene_list,function(x)
RNAseqStat::enhance_enrichGO(gene =x, OrgDb = 'org.Hs.eg.db', keyType = "SYMBOL", ont="CC", pvalueCutoff=0.05)),
times = 1L
)
# close cluster object
stopCluster(cl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.