# QualityFactorControl <- function(Experiment)
# {
# for(Smp in 1:length(Experiment@Data@FactorList))
# {
# Peak.Heights <- as.numeric(as.vector(unlist(Experiment@Data@FactorList[[Smp]]$"Peak Height")))
# delete.factors <- which(Peak.Heights<Experiment@Data@Parameters$min.peak.height)
# if(length(delete.factors)!=0)
# {
# FactorList.new <- as.data.frame(lapply(Experiment@Data@FactorList[[Smp]], function(x) x[-delete.factors]))
# if(any(colnames(FactorList.new)=="Peak.Height")) colnames(FactorList.new)[which(colnames(FactorList.new)=="Peak.Height")] <- "Peak Height"
# Experiment@Data@FactorList[[Smp]] <- FactorList.new
# }
# }
# Experiment
# }
#' @importFrom utils txtProgressBar setTxtProgressBar getTxtProgressBar
#' @importFrom stats dist cor
#' @importFrom igraph graph.data.frame clusters
#' @importFrom progress progress_bar
align.factors <- function(factors.list, min.spectra.cor, max.time.dist, max.mz, mz.range)
{
stopifnot(min.spectra.cor<1,min.spectra.cor>0)
empty.samples <- which(lapply(factors.list,nrow)==0)
factors.list.original <- NULL
if(length(empty.samples)!=0)
{
factors.list.original <- factors.list
factors.list <- factors.list[-empty.samples]
}
if(length(factors.list)==1) stop("Only one sample has been processed. No alignment needed")
if(length(factors.list)==0) stop("No compounds found, alignment cannot be performed!")
N.samples <- length(factors.list)
factors.assignment.matrix <- apply(as.matrix(1:length(factors.list)),1,function(x) {
as.data.frame(matrix(c(rep(x,length(factors.list[[x]]$ID)), 1:length(factors.list[[x]]$ID)), ncol=2))
})
factors.assignment.matrix <- do.call(rbind, factors.assignment.matrix)
colnames(factors.assignment.matrix) <- c("Sample","Element")
retention.time.vector <- lapply(factors.list,function(x){as.numeric(as.vector(x[,"RT"]))})
retention.time.vector <- as.vector(unlist(retention.time.vector))
ret.iterator <- as.matrix(1:length(retention.time.vector))
## New Method:
order.vector <- order(retention.time.vector)
retention.time.vector.o <- retention.time.vector[order.vector]
res.vector <- retention.time.vector.o - c(retention.time.vector.o[-1],retention.time.vector.o[length(retention.time.vector.o)])
group.flags <- which(abs(res.vector)>max.time.dist)
#Fixed Bug #AL_290316:
if(length(group.flags)==0)
{
time.dist.clustlist <- list(order.vector[1:length(order.vector)])
}else{
if (group.flags[1] != 1) group.flags <- c(0, group.flags)
if (group.flags[length(group.flags)] != length(order.vector)) group.flags <- c(group.flags, length(order.vector))
time.dist.clustlist <- sapply(1:(length(group.flags) - 1), function(i) order.vector[(group.flags[i] + 1):group.flags[(i + 1)]])
}
#if(group.flags[1]!=1) group.flags <- c(0,group.flags)
#if(group.flags[length(group.flags)]!=length(order.vector)) group.flags <- c(group.flags,length(order.vector))
#time.dist.clustlist <- sapply(1:(length(group.flags)-1), function(i) order.vector[(group.flags[i]+1):group.flags[(i+1)]])
id.vector <- as.vector(unlist(lapply(factors.list,function(x){as.vector(x[,"ID"])})))
global.class.vector <- unlist(apply(as.matrix(1:length(factors.list)),1,function(x){rep(x,length(factors.list[[x]][,1]))}))
#uu <<- time.dist.clustlist
del.inds <- which(unlist(lapply(time.dist.clustlist, length))==1)
if(length(del.inds)!=0) time.dist.clustlist <- time.dist.clustlist[-del.inds]
###################
#k <- 1
pb <- progress_bar$new(
format = " aligning [:bar] :percent eta: :eta",
total = length(time.dist.clustlist), clear = FALSE)
pb$tick(0)
global.aligned.factors <- list()
for(k in 1:length(time.dist.clustlist))
{
local.clust <- time.dist.clustlist[k][[1]]
class.vector <- global.class.vector[local.clust]
time.dist <- as.matrix(dist(retention.time.vector[local.clust]), upper=T, diag=F)
local.spectra.matrix <- sapply(local.clust, function(x){
convertMSPspectra(factors.list[[factors.assignment.matrix[x,1]]]$Spectra[[factors.assignment.matrix[x,2]]],max.mz)
})
local.spectra.matrix[-mz.range,] <- 0
cor.dist <- suppressWarnings(cor(local.spectra.matrix))
cor.dist[cor.dist<0] <- 0
cor.dist <- 1 - cor.dist
cor.dist[abs(cor.dist)>(1-min.spectra.cor)] <- NA ##Eliminar upper limits
time.dist[abs(time.dist)>max.time.dist] <- NA
max.eu.dist <- sqrt((1-min.spectra.cor)^2+max.time.dist^2)
eu.dist <- sqrt(time.dist^2+cor.dist^2)
eu.dist[eu.dist==0] <- NA
eu.dist.vector <- which(eu.dist<max.eu.dist, arr.ind=T)
eu.dist.graph <- graph.data.frame(eu.dist.vector, directed = FALSE)
eu.dist.clustlist <- split(unique(as.vector(eu.dist.vector)), clusters(eu.dist.graph)$membership)
clustlist.unit.length <- which(as.vector(unlist(lapply(eu.dist.clustlist,length)))==1)
if(length(clustlist.unit.length)!=0) eu.dist.clustlist <- eu.dist.clustlist[-clustlist.unit.length]
aligned.factors <- lapply(eu.dist.clustlist,function(clust){
#clust <- eu.dist.clustlist[[2]]
inter.distance.matrix <- eu.dist[clust,clust]
forbidden.combinations <- which((class.vector[clust] %*% t(class.vector[clust]))== class.vector[clust]^2, arr.ind=F)
inter.distance.matrix[forbidden.combinations] <- NA
inter.distance.matrix[inter.distance.matrix==0] <- NA
clusts <- comp.clusters(inter.distance.matrix, class.vector[clust])
clusts <- lapply(clusts,function(x) {clust[as.vector(x$elements)]})
clusts
})
aligned.factors <- unlist(aligned.factors, recursive = FALSE)
aligned.factors <- lapply(aligned.factors, function(x) local.clust[x])
global.aligned.factors <- c(global.aligned.factors,aligned.factors)
pb$tick()
}
aligned.factors <- global.aligned.factors
if(!(any(unlist(lapply(factors.list,function(x) {is.null(x$AlignID)}))==FALSE)))
{
factors.list <- lapply(factors.list, function(x){
outp <- cbind(x,matrix(0,nrow=length(x$ID)))
colnames(outp)[ncol(outp)] <- "AlignID"
outp
})
}else{
factors.list <- lapply(factors.list, function(x){
x$AlignID <- rep(0,nrow=length(x$ID))
x
})
}
for(i in 1:length(aligned.factors))
{
x <- aligned.factors[[i]] #[[1]]
loc <- factors.assignment.matrix[x,]
for(j in 1:length(loc[,1])) factors.list[[loc[j,1]]]$AlignID[loc[j,2]] <- i
}
if(!is.null(factors.list.original))
{
factors.list.original[-empty.samples] <- factors.list
factors.list <- factors.list.original
}
factors.list
}
create.factorlist.table <- function(object)
{
empty.samples <- which(lapply(object@Data@FactorList,nrow)==0)
if(length(empty.samples)!=0) object@Data@FactorList <- object@Data@FactorList[-empty.samples]
factors.list <- object@Data@FactorList
#Spectra table
alignId <- lapply(factors.list,function(x){x$AlignID})
N.groups <- unique(unlist(alignId))
N.groups <- N.groups[-which(N.groups==0)]
N.samples <- length(object@Data@FactorList)
samples.name <- names(object@Data@FactorList)
max.mz <- max(object@Results@Parameters@Alignment$mz.range)
spectra.list <- apply(as.matrix(N.groups),1,function(Ng){
#cat(Ng, " \n")
align.iterator <- as.vector(which(lapply(alignId,function(x){
if(length(intersect(Ng,x))!=0) {
return(T)
}else{
return(F)
}
})==T))
group.spectra <- lapply(as.matrix(align.iterator), function(x){
list(spectra=convertMSPspectra(factors.list[[x]][which(alignId[[x]]==Ng),"Spectra"],max.mz),time=factors.list[[x]][which(alignId[[x]]==Ng),"RT"])
})
if(length(align.iterator)!=0)
{
common.spectra <- normalize(rowSums(do.call(cbind,lapply(group.spectra,function(x){x$spectra}))))
common.time <- mean(do.call(cbind,lapply(group.spectra,function(x){x$time})))
return(list(spectra=common.spectra,time=common.time, nsamples=length(align.iterator)))
}else{return(NULL)}
})
#list.delete <- unlist(lapply(spectra.list, is.null))
#if(any(list.delete)) spectra.list <- spectra.list[-which(list.delete==T)]
#N.groups <- length(spectra.list)
spectra.matrix <- do.call(cbind,lapply(spectra.list,function(x){x$spectra}))
#time.vector <- unlist(lapply(spectra.list,function(x){x$time}))
#foundin.vector <- unlist(lapply(spectra.list,function(x){x$nsamples}))
for(i in 1:N.samples) samples.name[i] <- strsplit(as.character(samples.name[i]), split="\\.")[[1]][1]
align.matrix <- t(apply(as.matrix(N.groups),1,function(i){
local.index <- as.vector(unlist(lapply(object@Data@FactorList,function(x) {
outp <- as.character(x[which(x$AlignID==i),"Peak Height"])
if(length(outp)==0) outp <- 0
as.numeric(as.vector(outp))
})))
}))
foundIn.vector <- apply(align.matrix,1,function(x) length(which(x!=0)))
time.align.matrix <- t(apply(as.matrix(N.groups),1,function(i){
local.index <- as.vector(unlist(lapply(object@Data@FactorList,function(x) {
outp <- as.character(x[which(x$AlignID==i),"RT"])
if(length(outp)==0) outp <- 0
outp
})))
}))
class(time.align.matrix) <- "numeric"
rt.mean <- rowSums(time.align.matrix)/apply(time.align.matrix,1,function(x) length(which(x!=0)))
align.List <- matrix(0,nrow=nrow(align.matrix),ncol=(5+N.samples))
colnames(align.List) <- c("AlignID","Factor","tmean","FoundIn","Spectra",as.character(samples.name))
align.List[,6:(5+N.samples)] <- align.matrix
# for(i in 1:N.groups)
# {
# local.pos <- which(object@Results@Identification$AlignID==i)
# align.List[i,"AlignID"] <- object@Results@Identification[local.pos,"AlignID"]
# align.List[i,"Name"] <- as.character(object@Results@Identification[local.pos,"Name"])
# align.List[i,"tmean"] <- object@Results@Identification[local.pos,"tmean"]
# #alignList[i,c(1:3)] <- object@Results@Identification[which(object@Results@Identification$AlignID==i),c("AlignID","Name","tmean")]
# }
align.List[,"AlignID"] <- N.groups
align.List[,"tmean"] <- round(rt.mean, digits=4)
align.List[,"Factor"] <- apply(align.List,1,function(x) paste("Factor #", x["AlignID"] , sep=""))
align.List[,"FoundIn"] <- foundIn.vector
align.List[,"Spectra"] <- apply(as.matrix(1:ncol(spectra.matrix)),1,function(j){
spectra <- spectra.matrix[,j]
spectra.index <- which(spectra!=0)
spectra.pos <- spectra.index
spectra.int <- round(spectra[spectra.index]*1000)
spectra.text <- paste(sweep(as.matrix(spectra.pos),1,as.matrix(spectra.int),"paste.sp"), collapse=" ")
spectra.text
})
align.List <- as.data.frame(align.List[order(as.vector(as.numeric(align.List[,"tmean"]))),], row.names=1:nrow(align.List))
align.List[,"tmean"] <- as.numeric(as.vector(align.List[,"tmean"]))
align.List[,"FoundIn"] <- as.numeric(as.vector(align.List[,"FoundIn"]))
align.List[,"AlignID"] <- as.integer(as.vector(align.List[,"AlignID"]))
align.List[,"Spectra"] <- as.character(align.List[,"Spectra"])
align.List[,"Factor"] <- as.character(align.List[,"Factor"])
for(i in 6:ncol(align.List)) align.List[,i] <- as.numeric(as.vector(align.List[,i]))
align.List
}
#' @importFrom stats na.omit
comp.clusters <- function(hdist, classes)
{
k <- nrow(hdist)
n.class <- unique(classes)
group.list <- list()
it <- 1
while(1)
{
min.list <- list()
min.index <- 0
min.previous <- NA
for(j in 1:k)
{
minn <- rep(NA,length(n.class))
w.minn <- minn
for(i in n.class)
{
D <- hdist[j,which(classes==i)]
if(!all(is.na(D)))
{
minn[i] <- min(D, na.rm=T)
w.minn[i] <- which(classes==i)[which.min(D)]
}
}
group.distance <- sqrt(sum(minn^2, na.rm=T))/length(which(is.na(minn)==F))
if(is.na(group.distance)) group.distance <- 0
min.list[[j]] <- list(dist = group.distance, elements = w.minn)
if(which.min(c(group.distance,min.previous))==1 && group.distance!=0) {min.previous <- group.distance; min.index <- j}
#cat(j,": ", sqrt(sum(minn^2, na.rm=T)), " with N: ", length(which(is.na(minn)==T)) ,"\n", sep="")
}
if(min.index==0) break
g.elements <- as.vector(na.omit(min.list[[min.index]]$elements))
g.elements <- c(g.elements,min.index)
if(!any(is.null(unlist(group.list))))
{
remove.i <- which((g.elements %in% unique(unlist(group.list)))==T)
if(length(remove.i)!=0) g.elements <- g.elements[-remove.i]
}
#if(length(g.elements)==0) break;
group.list[[it]] <- list(elements=g.elements)
it <- it + 1
#hdist[g.elements,g.elements] <- NA
hdist[,g.elements] <- NA
hdist[g.elements,] <- NA
}
group.list
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.