R/cellalign.R

Defines functions gene_test_plot global_cellalign local_cellalign

Documented in gene_test_plot global_cellalign local_cellalign

#' Align two trajectories via cellalign
#'
#' cell align
#'
#' @param exp_ref
#' @param exp_query
#' @param traj_ref
#' @param traj_query
#' @param Thresh
#' @param winSz
#' @param numPts
#'
#' @return
#' @export
#'
#'
#' @examples
local_cellalign <- function(exp_ref, exp_query, traj_ref, traj_query, Thresh = 0.2, winSz = 0.1, numPts = 200) {
    # interpolating and scaling data for local alignment
    interLocalRef <- interWeights(expDataBatch = exp_ref, trajCond = traj_ref, winSz = winSz, numPts = numPts)
    interLocalQuery <- interWeights(expDataBatch = exp_query, trajCond = traj_query, winSz = winSz, numPts = numPts)
    interScaledLocalRef <- cellAlign::scaleInterpolate(interLocalRef)
    interScaledLocalQuery <- cellAlign::scaleInterpolate(interLocalQuery)

    # calculate dissimilarity matrix gated with threshold and align at local minima
    A <- calcDistMat(interScaledLocalQuery$scaledData, interScaledLocalRef$scaledData, dist.method = "Euclidean")
    A[A > 10 * Thresh] <- max(A)
    alignment <- localAlign(interScaledLocalQuery$scaledData, interScaledLocalRef$scaledData, threshPercent = Thresh)

    costMat <- t(apply(A, 1, function(x) {
        return(as.numeric(x))
    }))
    linearInd <- cellAlign::sub2ind(nrow(A), alignment$align[[1]]$index1, alignment$align[[1]]$index2)
    costMat[linearInd] <- NA
    costMat <- data.frame(costMat, row.names = 1:numPts)
    colnames(costMat) <- 1:numPts
    # pheatmap(costMat, cluster_cols = F, cluster_rows=F, border_color = NA,
    #          main = 'gated search region',
    #          show_rownames = F, show_colnames = F)

    alignment_plot <- plotAlign(alignment)

    # plots regions in pseudotime that are conserved
    BRef <- colMeans(interScaledLocalRef$scaledData)
    BQuery <- colMeans(interScaledLocalQuery$scaledData)
    p <- unique(alignment$align[[1]]$index1)
    q <- unique(alignment$align[[1]]$index2)
    plot(1:200, BQuery, xlab = "pseudotime", ylab = "mean interpolated expression", main = "unaligned mean expression", ylim = c(0, 1.1))
    points(p, BQuery[p], col = "red")
    points(1:200, BRef, col = "grey60")
    points(q, BRef[q], col = "red")
    text(90, 1, "Ref")
    text(150, 1, "Query")
    text(125, .3, "red points are conserved")
    return(list(alignment, alignment_plot))
}

#' Global Alignment of two trajectories with cellAlign
#'
#' @param exp_ref
#' @param exp_query
#' @param traj_ref
#' @param traj_query
#'
#' @return
#' @export
#'
#' @examples
global_cellalign <- function(exp_ref, exp_query, traj_ref, traj_query, numPts = 200) {
    interRef <- cellAlign::interWeights(
        expDataBatch = exp_ref, trajCond = traj_ref,
        winSz = 0.1, numPts = numPts
    )
    interQuery <- cellAlign::interWeights(
        expDataBatch = exp_query, trajCond = traj_query,
        winSz = 0.1, numPts = numPts
    )

    # scale the interpolated data (Recommended):
    interScaledGlobalRef <- cellAlign::scaleInterpolate(interRef)
    interScaledGlobalQuery <- cellAlign::scaleInterpolate(interQuery)

    # test small DistMat
    A <- calcDistMat(interScaledGlobalQuery$scaledData[, 1:10], interScaledGlobalRef$scaledData[, 1:10], dist.method = "Euclidean")
    pheatmap(A,
        cluster_cols = F, cluster_rows = F, main = "Ref vs Query distances, 1st 10 points",
        show_rownames = F, show_colnames = F, display_numbers = TRUE
    )


    # perform global alignment of all genes
    alignment <- globalAlign(interScaledGlobalQuery$scaledData, interScaledGlobalRef$scaledData,
        scores = list(
            query = interScaledGlobalQuery$traj,
            ref = interScaledGlobalRef$traj
        ),
        sigCalc = F, numPerm = 20
    )
    p <- cellAlign::plotAlign(alignment)
    # map interpolation to real data
    mapping <- mapRealDataGlobal(alignment,
        intTrajQuery = interScaledGlobalQuery$traj, realTrajQuery = traj_query,
        intTrajRef = interScaledGlobalRef$traj, realTrajRef = traj_ref
    )
    mapping_plot <- cellAlign::plotMapping(mapping)
    print(p)
    print(mapping_plot)
    return(list(alignment, mapping))
}

#' Plot Gene expression over pseudotime on reference and query trajectories from cellAlign
#'
#' @param expGlobalRef
#' @param expGlobalQuery
#' @param trajRef
#' @param trajQuery
#' @param winSz
#' @param numPts
#'
#' @return
#' @export
#'
#' @examples
gene_test_plot <- function(expGlobalRef, expGlobalQuery, trajRef, trajQuery, winSz = 0.1, numPts = 200) {
    interGlobalRef <- cellAlign::interWeights(
        expDataBatch = expGlobalRef, trajCond = trajRef,
        winSz = winSz, numPts = numPts
    )
    interGlobalQuery <- cellAlign::interWeights(
        expDataBatch = expGlobalQuery, trajCond = trajQuery,
        winSz = winSz, numPts = numPts
    )

    sharedMarkers <- intersect(rownames(expGlobalRef), rownames(expGlobalQuery))
    # whichgene="NRL"
    whichgene <- sharedMarkers[1]
    selectedRef <- interGlobalRef$interpolatedVals[whichgene, ]
    selectedQuery <- interGlobalQuery$interpolatedVals[whichgene, ]

    dfRefi <- data.frame(traj = interGlobalRef$traj, value = (selectedRef), error = interGlobalRef$error[whichgene, ])
    dfRef <- data.frame(traj = trajRef, t(expGlobalRef[whichgene, ]))
    dfQueryi <- data.frame(traj = interGlobalQuery$traj, value = (selectedQuery), error = interGlobalQuery$error[whichgene, ])
    dfQuery <- data.frame(traj = trajQuery, t(expGlobalQuery[whichgene, ]))
    dfRefM <- melt(dfRef, id.vars = "traj")
    dfQueryM <- melt(dfQuery, id.vars = "traj")

    # plot of an example gene and its interpolation with error bars
    p <- ggplot(dfRefi, aes(x = traj, y = value)) +
        geom_errorbar(aes(ymin = value - error / 2, ymax = value + error / 2)) +
        geom_line(size = 2) +
        geom_point(data = dfRefM, aes(x = traj, y = value)) +
        ggtitle(whichgene)
    print(p)
}
whtns/seuratTools documentation built on Oct. 28, 2024, 7:18 a.m.