#' internal function to build gof_map
#'
#' @noRd
gof_map_build <- function() {
text <- 'raw, clean, fmt, omit,
nobs, Num.Obs., 0, FALSE,
nimp, Num.Imp., 0, FALSE,
nclusters, Num.Clust., 0, FALSE,
nblocks, Num.Blocks, 0, FALSE,
r.squared, R2, 3, FALSE,
r2, R2, 3, FALSE,
adj.r.squared, R2 Adj., 3, FALSE,
r2.adjusted, R2 Adj., 3, FALSE,
r2.marginal, R2 Marg., 3, FALSE,
r2.conditional, R2 Cond., 3, FALSE,
r2.within, R2 Within, 3, FALSE,
r2.within.adjusted, R2 Within Adj., 3, FALSE,
pseudo.r.squared, R2 Pseudo, 3, FALSE,
within.r.squared, R2 Within, 3, FALSE,
r.squared.within, R2 Within, 3, FALSE,
AIC, AIC, 1, FALSE,
aic, AIC, 1, FALSE,
BIC, BIC, 1, FALSE,
bic, BIC, 1, FALSE,
icc, ICC, 1, FALSE,
logLik, Log.Lik., 3, FALSE,
F, F, 3, FALSE,
elpd, ELPD, 1, FALSE,
elpd.se, ELPD s.e., 1, FALSE,
looic, LOOIC, 1, FALSE
looic.se, LOOIC s.e., 1, FALSE
waic, WAIC, 1, FALSE
rmse, RMSE, 2, FALSE,
statistic.Weak.instrument, Weak IV F-stat, 1, FALSE,
weak.instruments, Weak IV F-stat, 1, FALSE,
statistic.Wu.Hausman, Wu-Hausman Chi-Sq., 1, FALSE,
statistic.Sargan, Sargan J-stat, 1, FALSE,
nrow, Rows, 0, FALSE,
ncol, Columns, 0, FALSE,
complete.obs, Num.Obs., 0, FALSE,
na.fraction, Share missing, 2, FALSE,
std.error.type, Std.Errors, 3, FALSE,
se_type, Std.Errors, 3, FALSE,
vcov.type, Std.Errors, 0, FALSE,
aicc, AICC, 1, TRUE,
agfi, AGFI, 0, TRUE,
cfi, CFI, 0, TRUE,
chisq, Chi2, 3, TRUE,
converged, Converged, 0, TRUE,
deviance, Deviance, 2, TRUE,
df, DF, 0, TRUE,
df.null, DF Null, 0, TRUE,
df.residual, DF Resid, 0, TRUE,
estimator, Estimator, 0, TRUE,
log.loss, Log Loss, 3, TRUE,
missing_method, Missing Method, 0, TRUE,
nexcluded, Num.Excluded, 0, TRUE,
ngroups, Num.Groups, 0, TRUE,
norig, Num.Orig., 0, TRUE,
npar, Num.Param., 0, TRUE,
null.deviance, Deviance Null, 2, TRUE,
p.value, p, 3, TRUE,
p.value.Sargan, Sargan p, 3, TRUE,
p.value.Weak.instrument, Weak IV p, 3, TRUE,
weak.instruments.p, Weak IV p, 3, TRUE,
p.value.Wu.Hausman, Wu-Hausman p, 3, TRUE,
pcp, PCP, 3, TRUE,
r2.nagelkerke, R2 Nagelkerke, 2, TRUE,
r2.tjur, R2 tjur , 2, TRUE,
rmsea, RMSE A, 0, TRUE,
rmsea.conf.high, RMSE A CI, 0, TRUE,
score.log, Score Log, 3, TRUE,
score.spherical, Score Spherical, 3, TRUE,
sigma, Sigma, 3, TRUE,
srmr, SRMR, 0, TRUE,
statistic, Statistics, 3, TRUE,
wu.hausman, Wu-Hausman, 3, TRUE,
wu.hausman.p, Wu-Hausman (p), 3, TRUE,
statistic, Statistics, 3, TRUE,
tli, TLI, 0, TRUE,'
out <- utils::read.csv(
text = text,
colClasses = c("character", "character", "numeric", "logical", "NULL"))
for (i in 1:2) {
out[[i]] <- trimws(out[[i]])
}
out
}
#' Data.frame used to clean up and format goodness-of-fit statistics
#'
#' By default, this data frame is passed to the 'gof_map' argument of the
#' 'modelsummary' function. Users can modify this data frame to
#' customize the list of statistics to display and their format. See example
#' below.
#' @docType data
#' @keywords datasets
#' @name gof_map
#' @format data.frame with 4 columns of character data: raw, clean, fmt, omit
#' @examples
#' if (identical(Sys.getenv("pkgdown"), "true")) {
#'
#' library(modelsummary)
#' mod <- lm(wt ~ drat, data = mtcars)
#' gm <- modelsummary::gof_map
#' gm$omit[gm$raw == 'deviance'] <- FALSE
#' gm$fmt[gm$raw == 'r.squared'] <- "%.5f"
#' modelsummary(mod, gof_map = gm)
#' }
#'
#' @export
gof_map <- gof_map_build()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.