R/module_values.R

Defines functions tP_values_all featureServer tP_featureUI distServer tP_distUI fR_distUI ECDFServer tP_ECDFUI maServer tP_maUI meanSdServer tP_meanSdUI box_meanSdUI cvServer tP_cvUI driftServer tP_driftUI boxPlotServer boxPlotUIServer tP_boxplotUI fR_boxplotUI

################################################################################
################################### Values #####################################
################################################################################

#' @name fR_boxplotUI
#'
#' @title Fluid row UI for tab panel 'Boxplot/Violin plot'
#'
#' @description
#' The module defines the UI for the tab panel 'Boxplot/Violin plot'.
#'
#' @details 
#' \code{fR_boxplotUI} returns the HTML code for the tab-pane 
#' 'Boxplot/Violin plot'. Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param name \code{character}
#' @param collapsed \code{logical}
#' 
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' fR_boxplotUI("test", "name")
#' 
#' @importFrom shiny NS fluidRow downloadButton plotOutput
#' @importFrom shinydashboard box
#' 
#' @noRd
fR_boxplotUI <- function(id, name, collapsed) {
    ns <- shiny::NS(id)
    shiny::fluidRow(
        shinydashboard::box(title = name, width = 12, collapsible = TRUE, 
            collapsed = collapsed,
            shiny::plotOutput(outputId = ns("boxplot")),
            shiny::downloadButton(outputId = ns("downloadPlot"), ""))
    )
}

#' @name tP_boxplotUI
#' 
#' @title Tab panel UI for tab panel 'Boxplot/Violin plot'
#' 
#' @description 
#' The function defines the UI for the tab panel 'Boxplot/Violin plot'. It 
#' serves as a wrapper for the function \code{fR_boxplotUI}.
#' 
#' @details 
#' \code{tP_boxplotUI} returns the HTML code for the tab-pane 
#' 'Boxplot/Violin plot'. Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' 
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' tP_boxplotUI("test")
#' 
#' @importFrom shiny NS tabPanel fluidRow column conditionalPanel
#' @importFrom shiny selectInput radioButtons HTML
#' @importFrom shinyhelper helper
#' @importFrom plotly plotlyOutput
#' 
#' @noRd
tP_boxplotUI <- function(id) {
    
    ns <- shiny::NS(id)
    shiny::tabPanel(title = "Boxplot/Violin plot",
        shiny::fluidRow(
            shiny::column(6, 
                shiny::radioButtons(inputId = "boxLog",
                    label = shiny::HTML("Display log values? <br>
                        (only for 'raw', 'normalized' and 'batch corrected')"),
                    choices = list("no log", "log"),
                    selected = "no log")),
            shiny::column(2, 
                shiny::radioButtons(inputId = "violinPlot",
                    label = "Type of display", 
                    choices = list("boxplot", "violin"), 
                        selected = "boxplot")),
            shiny::column(3, 
                shiny::selectInput(inputId = ns("orderCategory"), 
                    label = "Select variable to order samples", 
                    choices = "name")),
            shiny::column(1, 
                shiny::br() |> 
                    shinyhelper::helper(content = "tabPanel_boxplot"))
        ),
        fR_boxplotUI("boxRaw", "raw", collapsed = FALSE),
        fR_boxplotUI("boxNorm", "normalized", collapsed = TRUE),
        fR_boxplotUI("boxBatch", "batch corrected", collapsed = TRUE),
        fR_boxplotUI("boxTransf", "transformed", collapsed = TRUE),
        shiny::conditionalPanel("output.missingVals == 'TRUE'", 
            fR_boxplotUI("boxImp", "imputed", collapsed = TRUE))
    )
}

#' @name boxPlotUIServer
#' 
#' @title Module for server expressions for the UI of tab panel 
#' 'Boxplot/Violin plot' 
#' 
#' @description
#' The module defines the server expressions for parts of the UI for the tab 
#' panel 'Boxplot/Violin plot'. It will load different helper files depending
#' on \code{missingValue}
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param missingValue \code{logical} (will load different helper files)
#' 
#' @return
#' \code{shiny.render.function} expression
#' 
#' @importFrom shiny moduleServer observe updateSelectInput
#' @importFrom shinyhelper helper
#' @importFrom SummarizedExperiment SummarizedExperiment
#'
#' @author Thomas Naake
#' 
#' @noRd
boxPlotUIServer <- function(id, se) {

    shiny::moduleServer(
        id, 
        function(input, output, session) {
            
            shiny::observe({
                shiny::updateSelectInput(session = session, 
                    inputId = "orderCategory", choices = colnames(se@colData))
            })

        }
    )
}

#' @name boxPlotServer
#' 
#' @title Module for server expressions of tab panel 'Boxplot/Violin plot' 
#' 
#' @description
#' The module defines the server expressions for the tab panel 
#' 'Boxplot/Violin plot'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param se \code{SummarizedExperiment}
#' @param boxLog \code{reactive} expression and \code{logical}
#' @param violin \code{reactive} expression and \code{character}
#' @param type \code{character}
#' 
#' @return
#' \code{shiny.render.function} expression
#'
#' @author Thomas Naake
#' 
#' @importFrom shiny moduleServer reactive renderPlot downloadHandler req
#' @importFrom ggplot2 ggsave
#' @importFrom plotly plotlyOutput
#' 
#' @noRd
boxPlotServer <- function(id, se, orderCategory, boxLog, violin, type) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {
            
            logValues <- shiny::reactive({
                if (boxLog() == "log") {
                    TRUE
                } else {
                    FALSE
                }
            })
            
            vP <- shiny::reactive({
                if (violin() == "violin") {
                    TRUE
                } else {
                    FALSE
                }
            })
            
            ## create the actual plot
            p_boxplot <- shiny::reactive({
                createBoxplot(se = se(), orderCategory = orderCategory(), 
                    title = "", log = logValues(), 
                    violin = vP())
            })
            output$boxplot <- shiny::renderPlot({
                p_boxplot()
            })
            
            output$downloadPlot <- shiny::downloadHandler(
                filename = function() {
                    paste("Boxplot_violinplot_", type, ".pdf", sep = "")
                },
                content = function(file) {
                    ggplot2::ggsave(file, p_boxplot(), device = "pdf",
                        limitsize = FALSE)
                }
            )
        }
    )
}

################################################################################
################################# drift/trend ##################################
################################################################################
#' @name tP_driftUI
#'
#' @title Tab panel UI for tab panel 'Trend/drift'
#'
#' @description
#' The module defines the UI for the tab panel 'Trend/drift'.
#'
#' @details 
#' \code{tP_driftUI} returns the HTML code for the tab-pane 
#' 'Trend/drift'. Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#'
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#'
#' @examples
#' tP_driftUI("test", se)
#' 
#' @importFrom shiny NS tabPanel fluidRow downloadButton column
#' @importFrom shiny selectInput
#' @importFrom shinydashboard box
#' @importFrom shinyhelper helper
#' @importFrom plotly plotlyOutput
#' 
#' @noRd
tP_driftUI <- function(id) {

    ns <- shiny::NS(id)
    shiny::tabPanel(title = "Trend/drift",
        shiny::fluidRow(
            shiny::column(width = 12,
                plotly::plotlyOutput(outputId = ns("plotDrift"),
                    width = "95%") |>
                    shinyhelper::helper(content = "tabPanel_drift"),
                shiny::downloadButton(outputId = ns("downloadPlot"), "")
            ),
            shinydashboard::box(width = 12, collapsible = TRUE, 
                collapsed = FALSE, title = "Parameters",
                shiny::column(6,
                    shiny::selectInput(
                        inputId = ns("category"),
                        label = "Select variable", choices = "name"),
                    shiny::selectInput(
                        inputId = ns("levelSel"), 
                        label = "Select level to highlight", 
                        choices = "all"),
                    shiny::selectInput(
                        inputId = ns("orderCategory"),
                        label = "Select variable to order samples",
                        choices = "name")),
                shiny::column(6,
                    shiny::selectInput(inputId = ns("aggregation"), 
                        label = "Select aggregation",
                        choices = list("sum", "median"), selected = "sum"),
                    shiny::selectInput(inputId = ns("method"),
                        label = "Select smoothing method",
                        choices = list("LOESS" = "loess", "linear model" = "lm"),
                        selected = "loess"),
                    shiny::selectInput(inputId = ns("data"),
                        label = "Select data input", choices = "raw"))
            ),
        )
    )
}

#' @name driftServer
#' 
#' @title Module for server expressions of tab panel 'Trend/drift' 
#' 
#' @description
#' The module defines the server expressions for the tab panel 
#' 'Trend/drift'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param se \code{SummarizedExperiment} and \code{reactive} value
#' @param se_n \code{SummarizedExperiment} and \code{reactive} value
#' @param se_b \code{SummarizedExperiment} and \code{reactive} value
#' @param se_t \code{SummarizedExperiment} and \code{reactive} value
#' @param se_i \code{SummarizedExperiment} and \code{reactive} value
#' @param missingValue \code{logical} (if \code{FALSE} do not show option for imputed)
#' 
#' @return
#' \code{shiny.render.function} expression
#'
#' @author Thomas Naake
#' 
#' @importFrom shiny moduleServer selectInput reactive req observe
#' @importFrom shiny updateSelectInput
#' @importFrom plotly renderPlotly
#' @importFrom htmlwidgets saveWidget
#' @importFrom SummarizedExperiment colData
#' @importFrom shinyhelper helper
#' 
#' @noRd
driftServer <- function(id, se, se_n, se_b, se_t, se_i, missingValue) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {
            
            shiny::observe({
                if (missingValue) {
                    data_l <- list("raw", "normalized", "batch corrected",
                        "transformed", "imputed")
                } else {
                    data_l <- list("raw", "normalized", "batch corrected",
                        "transformed")
                }
                shiny::updateSelectInput(session = session, inputId = "data",
                    choices = data_l)
            })
            
            se_drift <- shiny::reactive({
                shiny::req(input$data)
                if (input$data == "raw") se <- se()
                if (input$data == "normalized") se <- se_n()
                if (input$data == "batch corrected") se <- se_b()
                if (input$data == "transformed") se <- se_t()
                if (input$data == "imputed") se <- se_i()
                se
            })
            
            cD <- shiny::reactive(se()@colData)
            
            shiny::observe({
                cols_cD <- colnames(cD())
                shiny::updateSelectInput(session = session, 
                    inputId = "category", 
                    choices = cols_cD)
                shiny::updateSelectInput(session = session,
                    inputId = "orderCategory", choices = cols_cD)
            })
            shiny::observe({
                shiny::updateSelectInput(session = session, 
                    inputId = "levelSel",
                    choices = c("all", unique(cD()[[input$category]])))
            })
            
            p_drift <- shiny::reactive({
                driftPlot(se = se_drift(), aggregation = input$aggregation, 
                    category = input$category, 
                    orderCategory = input$orderCategory,
                    level = input$levelSel, method = input$method)
            })
            
            output$plotDrift <- plotly::renderPlotly({
                p_drift()
            })
            
            output$downloadPlot <- shiny::downloadHandler(
                filename = function() {
                    paste("Drift_", input$aggregation, "_", 
                        input$category, "_", 
                        input$levelSel, "_", input$method, ".html", sep = "")
                },
                content = function(file) {
                    htmlwidgets::saveWidget(p_drift(), file)
                }
            )
        }
    )
}


################################################################################
########################### coefficient of variation ###########################
################################################################################

#' @name tP_cvUI
#'
#' @title Tab panel UI for tab panel 'Coefficient of Variation'
#'
#' @description
#' The module defines the UI for the tab panel 'Coefficient of Variation'.
#'
#' @details 
#' \code{fR_boxplotUI} returns the HTML code for the tab-pane 
#' 'Coefficient of Variation'. Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#'
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#'
#' @examples
#' fR_cvUI("test")
#' 
#' @importFrom shiny NS tabPanel fluidRow downloadButton selectInput column
#' 
#' @noRd
tP_cvUI <- function(id) {
    
    ns <- shiny::NS(id)
    shiny::tabPanel(title = "Coefficient of variation",
        shiny::fluidRow(
            shiny::column(12,
                shiny::plotOutput(outputId = ns("cv"), width = "95%") |>
                    shinyhelper::helper(content = "tabPanel_cv")),
            shiny::column(6, 
                shiny::selectInput(inputId = ns("data"),
                    label = "Data set", choices = "raw",
                    selected = "raw", multiple = TRUE)),
            shiny::column(6,
                shiny::downloadButton(outputId = ns("downloadPlot"), ""))
        )
    )
}

#' @name cvServer
#' 
#' @title Module for server expressions of tab panel 'Coefficient of variation' 
#' 
#' @description
#' The module defines the server expressions for the tab panel 
#' 'Coefficient of variation'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param a_r \code{matrix} and \code{reactive} value
#' @param a_n \code{matrix} and \code{reactive} value
#' @param a_b \code{matrix} and \code{reactive} value
#' @param a_t \code{matrix} and \code{reactive} value
#' @param a_i \code{matrix} and \code{reactive} value
#' @param missingValue \code{logical} (if \code{FALSE} do not use imputed values)
#' 
#' @return
#' \code{shiny.render.function} expression
#'
#' @author Thomas Naake
#' 
#' @importFrom shiny moduleServer reactive updateSelectInput renderPlot
#' @importFrom shiny downloadHandler 
#' @importFrom shinyhelper helper
#' @importFrom ggplot2 ggsave
#' @importFrom plotly plotlyOutput
#' 
#' @noRd
cvServer <- function(id, a_r, a_n, a_b, a_t, a_i, missingValue) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {
            
            ## create the cv values
            cv_r <- shiny::reactive({
                cv(a_r(), name = "raw")
            })

            cv_n <- shiny::reactive({
                cv(a_n(), name = "normalized")
            })
            
            cv_b <- shiny::reactive({
                cv(a_b(), name = "batch corrected")
            })

            cv_t <- shiny::reactive({
                cv(a_t(), name = "transformed")
            })

            cv_i <- shiny::reactive({
                cv(a_i(), name = "imputed")
            })
            
            shiny::observe({
                a_r()
                if (missingValue) {
                    data_l <-  c("raw", "normalized", "batch corrected",
                                    "transformed", "imputed")
                } else {
                   data_l <- c("raw", "normalized", "batch corrected",
                                  "transformed")
                }
                shiny::updateSelectInput(session = session, inputId = "data",
                    choices = data_l, selected = "raw")
            })

            ## create a reactive data.frame containing the cv values
            df_cv <- shiny::reactive({
                df <- data.frame(row.names = colnames(a_r()))
                if ("raw" %in% input$data) df <- cbind(df, cv_r())
                if ("normalized" %in% input$data) df <- cbind(df, cv_n())
                if ("batch corrected" %in% input$data) df <- cbind(df, cv_b())
                if ("transformed" %in% input$data) df <- cbind(df, cv_t())
                if ("imputed" %in% input$data) df <- cbind(df, cv_i())
                df
            })

            p_cv <- shiny::reactive({
                plotCV(df = df_cv())
            })
            
            ## create the actual plot
            output$cv <- shiny::renderPlot({
                p_cv()
            })
            
            output$downloadPlot <- shiny::downloadHandler(
                filename = function() {
                    paste("CV.pdf", sep = "")
                },
                content = function(file) {
                    ggplot2::ggsave(file, p_cv(), device = "pdf",
                        limitsize = FALSE)
                }
            )
            
        }
    )
}

################################################################################
################################# mean-sd plot #################################
################################################################################
#' @name box_meanSdUI
#' 
#' @title Box UI for tab panel 'mean-sd plot'
#' 
#' @description 
#' The module defines the UI in the tab panel 'mean-sd plot'.
#' 
#' @details 
#' \code{box_meanSdUI} returns the HTML code for the tab-pane 'mean-sd plot'. 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param name \code{character}, name/title for the box
#' 
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' box_meanSdUI("test", "test")
#' 
#' @importFrom shiny NS plotOutput downloadButton
#' @importFrom shinydashboard box
#' 
#' @noRd
box_meanSdUI <- function(id, name) {
    ns <- shiny::NS(id)
    shinydashboard::box(title = name, width = 6, collapsible = TRUE,
        shiny::plotOutput(outputId = ns("meanSd")),
        shiny::downloadButton(outputId = ns("downloadPlot"), "")
    )
}

#' @name tP_meanSdUI
#' 
#' @title Tab panel UI for tab panel 'mean-sd plot'
#' 
#' @description 
#' The module defines the UI in the tab panel 'mean-sd plot'. It serves as a 
#' wrapper for the function \code{box_meanSdUI}.
#' 
#' @details 
#' \code{box_meanSdUI} returns the HTML code for the tab-pane 'mean-sd plot'. 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#'
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples 
#' tP_meanSdUI("")
#' 
#' @importFrom shiny tabPanel fluidRow conditionalPanel br column
#' @importFrom shinyhelper helper
#' 
#' @noRd
tP_meanSdUI <- function(id) {

    ns <- shiny::NS(id)
    shiny::tabPanel(title = "mean-sd plot",
        ## call here the module UIs box_meanSdUI
        shiny::fluidRow(width = 12,
            shiny::column(12, 
                shiny::br() |> 
                    shinyhelper::helper(content = "tabPanel_meanSd")),
            box_meanSdUI("meanSdTransf", "transformed"), 
            shiny::conditionalPanel("output.missingVals == 'TRUE'",
                box_meanSdUI("meanSdImp", "imputed"))
        )
    )
}


#' @name meanSdServer
#' 
#' @title Module for server expressions of tab panel 'mean-sd plot'
#' 
#' @description 
#' The module defines the server expressions for the tab panel 'mean-sd plot'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param assay \code{matrix} and \code{reactive} expression, obtained from 
#' \code{assay(SummarizedExperiment)}
#' @param type \code{character}
#' 
#' @return
#' \code{shiny.render.function} expression
#'
#' @author Thomas Naake
#' 
#' @importFrom shiny moduleServer reactive renderPlot downloadHandler
#' @importFrom ggplot2 ggsave theme_classic
#' 
#' @noRd
#' 
#' @importFrom vsn meanSdPlot
meanSdServer <- function(id, assay, type) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {

            p_meansd <- shiny::reactive({
                req(assay())
                vsn::meanSdPlot(assay(), ranks = TRUE)$gg +
                    ggplot2::theme_bw()
            })
            output$meanSd <- shiny::renderPlot({
                p_meansd()
            })
            
            output$downloadPlot <- shiny::downloadHandler(
                filename = function() {
                    paste("Meansd_", type, ".pdf", sep = "")
                },
                content = function(file) {
                    ggplot2::ggsave(file, p_meansd(), device = "pdf",
                        limitsize = FALSE)
                }
            )
        }
    )
}

################################################################################
#################################### MA plot ###################################
################################################################################
#' @name tP_maUI
#' 
#' @title Tab panel UI for tab panel 'MA plot'
#' 
#' @description 
#' The module defines the UI in the tab panel 'MA plot'.
#' 
#' @details 
#' \code{tP_maUI} returns the HTML code for the tab-pane 'MA plot'. 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param missingValue \code{logical} (if \code{FALSE} do not show option 
#' for imputed)
#'
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' tP_maUI("test")
#' 
#' @importFrom shiny NS tabPanel fluidRow downloadButton column
#' @importFrom shiny plotOutput checkboxInput
#' @importFrom shinydashboard box
#' @importFrom plotly plotlyOutput
#' 
#' @noRd
tP_maUI <- function(id) {
    
    ns <- shiny::NS(id)
    shiny::tabPanel(title = "MA plot", 
        shiny::fluidRow(
            shiny::column(6, 
                shiny::selectInput(
                    inputId = ns("groupMA"), label = "group",
                    choices = "all")),
            shiny::column(6, 
                shiny::selectInput(
                    inputId = ns("plotMA"), label = "plot", multiple = TRUE,
                    selected = "sample", choices = "all_samples"))
        ) |> 
            shinyhelper::helper(content = "tabPanel_MA"),
        shiny::fluidRow(
            shinydashboard::box(title = "MA plot per sample", width = 12, 
                collapsible = TRUE, 
                shiny::plotOutput(outputId = ns("MAplot"), height = "100%"),
                shiny::downloadButton(outputId = ns("downloadPlotMA"), ""),
                shiny::selectInput(
                    inputId = ns("MAtype"), label = "Data set for the MA plot",
                    choices = "raw")
            )
        ),
        shiny::fluidRow(
            shinydashboard::box(title = "Hoeffding's D statistic", width = 12, 
                collapsible = TRUE,
                plotly::plotlyOutput(outputId = ns("hoeffDPlot")),
                shiny::downloadButton(outputId = ns("downloadPlothD"), ""),
                shiny::checkboxInput(inputId = ns("hDLines"),
                    label = "lines", value = FALSE)
            )
        )
    )
}


#' @name maServer
#' 
#' @title Module for server expressions of tab panel 'MA plot'
#' 
#' @description 
#' The module defines the server expressions in the tab panel 'MA plot'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param se \code{SummarizedExperiment} object and \code{reactive} value, 
#' containing raw values
#' @param se_n \code{SummarizedExperiment} object and \code{reactive} value, 
#' containing normalized values
#' @param se_b \code{SummarizedExperiment} object and \code{reactive} value, 
#' containing batch corrected values
#' @param se_t \code{SummarizedExperiment} object and \code{reactive} value, 
#' containing transformed values
#' @param se_i \code{SummarizedExperiment} object and \code{reactive} value, 
#' containing imputed values
#' @param innerWidth \code{numeric} and \code{reactive} value, specifying 
#' the width of the window size
#' @param missingValue \code{logical} (if \code{FALSE} do not show values for 
#' imputed)
#' 
#' @return
#' \code{shiny.render.function} expression
#'
#' @author Thomas Naake
#' 
#' @importFrom shiny moduleServer fluidRow selectInput column req 
#' @importFrom shiny downloadHandler bindCache
#' @importFrom shinyhelper helper
#' @importFrom plotly renderPlotly
#' @importFrom htmlwidgets saveWidget
#' @importFrom SummarizedExperiment colData
#' 
#' @noRd
maServer <-  function(id, se, se_n, se_b, se_t, se_i, innerWidth, 
    missingValue) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {
            
            ## create reactiveValues to store innerWidth, update if there are 
            ## changes to the parameters
            rv <- reactiveValues(
                innerWidth = "600px")
            
            observeEvent(innerWidth(), {
                rv$innerWidth <- innerWidth() * 2.5 / 5
            })
            
            ## access the colData slot and add the rownames as a new column to cD
            ## (will add the column "rowname")
            cD <- shiny::reactive({
                se()@colData |> as.data.frame()
            })
            
            cD_rn <- shiny::reactive({
                cD_rn <- cD()
                cD_rn[["rowname"]] <- rownames(cD_rn)
                cD_rn
            })
            
            selected_samples <- reactive({
                if (nrow(cD()) > 3) {
                    rownames(cD())[seq_len(3)]
                } else {
                    rownames(cD())
                }
            })
                
            shiny::observe({
                shiny::updateSelectInput(
                    inputId = "groupMA", choices = c("all", colnames(cD()))) 
            })
            
            shiny::observe({
                selected_samples <- selected_samples()
                
                shiny::updateSelectInput(
                    inputId = "plotMA", selected = selected_samples,
                    choices = cD_rn()[["rowname"]]) 
            })
            
            shiny::observe({
                if (missingValue) {
                    data_l <- list("raw", "normalized", "batch corrected", 
                        "transformed", "imputed")
                } else {
                    data_l <- list("raw", "normalized", "batch corrected", 
                        "transformed")
                }
                shiny::updateSelectInput(session = session, inputId = "MAtype",
                    choices = data_l)
            })
            
            ## create MA values: se, log2, group
            vals_r <- shiny::reactive({
                if (any(SummarizedExperiment::assay(se()) < 0, na.rm = TRUE)) {
                    log2_se <- FALSE 
                } else {
                    log2_se <- TRUE
                }
                MAvalues(se(), log2_se, input$groupMA)}) |>
                    shiny::bindCache(se(), input$groupMA, cache = "session")
            
            vals_n <- shiny::reactive({
                if (any(SummarizedExperiment::assay(se_n()) < 0, na.rm = TRUE)) {
                    log2_se <- FALSE
                } else {
                    log2_se <- TRUE
                }
                MAvalues(se_n(), log2_se, input$groupMA)}) |>
                shiny::bindCache(se_n(), input$groupMA, cache = "session")
            
            vals_b <- shiny::reactive({
                if (any(SummarizedExperiment::assay(se_b()) < 0, na.rm = TRUE)) {
                    log2_se <- FALSE 
                } else {
                    log2_se <- TRUE
                }
                MAvalues(se_b(), log2_se, input$groupMA)}) |>
                shiny::bindCache(se_b(), input$groupMA, cache = "session")

            
            vals_t <- shiny::reactive({
                MAvalues(se_t(), FALSE, input$groupMA)}) |>
                    shiny::bindCache(se_t(), input$groupMA, cache = "session")

            vals_i <- shiny::reactive({
                MAvalues(se_i(), FALSE, input$groupMA)}) |>
                    shiny::bindCache(se_i(), input$groupMA, cache = "session")

            ## MA plots: MA values, group
            p_ma <- shiny::reactive({
                if (length(input$plotMA) != 0) {
                    
                    if (input$MAtype == "raw") {
                        ma <- MAplot(vals_r(), group = input$groupMA, 
                            plot = input$plotMA)
                    }
                    if (input$MAtype == "normalized") {
                        ma <- MAplot(vals_n(), group = input$groupMA,
                            plot = input$plotMA)
                    }
                    if (input$MAtype == "batch corrected") {
                        ma <- MAplot(vals_b(), group = input$groupMA,
                            plot = input$plotMA)
                    }
                    if (input$MAtype == "transformed") {
                        ma <- MAplot(vals_t(), group = input$groupMA, 
                            plot = input$plotMA)
                    }
                    if (input$MAtype == "imputed") {
                        ma <- MAplot(vals_i(), group = input$groupMA,
                            plot = input$plotMA)
                    }
                    ma 
                } else 
                    NULL
            })
            
            output$MAplot <- shiny::renderPlot({
                if (!is.null(p_ma()))
                p_ma()
            }, height = reactive(rv$innerWidth), width = "auto")
            
            output$downloadPlotMA <- shiny::downloadHandler(
                filename = function() {
                    paste("MA_", input$MAtype, "_", input$groupMA, "_", 
                        input$plotMA,".pdf", sep = "")
                },
                content = function(file) {
                    ggplot2::ggsave(file, p_ma(), device = "pdf", 
                        height = rv$innerWidth, width = rv$innerWidth, 
                        units = "px", limitsize = FALSE)
                }
            )

            ## Hoeffding's D values: MA values, title for plot
            hD_r <- shiny::reactive({
                hoeffDValues(vals_r(), "raw", sample_n = 5000)
            }) |>
                shiny::bindCache(vals_r(), cache = "session")
            hD_n <- shiny::reactive({
                hoeffDValues(vals_n(),  "normalized", sample_n = 5000)
            }) |>
                shiny::bindCache(vals_n(), cache = "session")
            hD_b <- shiny::reactive({
                hoeffDValues(vals_b(), "batch corrected", sample_n = 5000)
            }) |>
                shiny::bindCache(vals_b(), cache = "session")
            hD_t <- shiny::reactive({
                hoeffDValues(vals_t(), "transformed", sample_n = 5000)
            }) |>
                shiny::bindCache(vals_t(), cache = "session")
            hD_i <- shiny::reactive({
                hoeffDValues(vals_i(), "imputed", sample_n = 5000)
            }) |>
                shiny::bindCache(vals_i(), cache = "session")

            ## create reactive data.frame for the hoeffDPlot function
            hoeffD_df <- shiny::reactive({
                if (missingValue) {
                    df <- data.frame(raw = hD_r(), normalized = hD_n(), 
                        `batch corrected` = hD_b(), transformed = hD_t(), 
                        imputed = hD_i())    
                } else {
                    df <- data.frame(raw = hD_r(), normalized = hD_n(), 
                        `batch corrected` = hD_b(), transformed = hD_t())
                }
                df
            })
            
            ## Hoeffding's D plots: lists (Hoeffding's D values), lines
            output$hoeffDPlot <- plotly::renderPlotly({
                hoeffDPlot(hoeffD_df(), lines = input$hDLines)  
            })
            
            output$downloadPlothD <- shiny::downloadHandler(
                filename = function() {
                    paste("Hoeffding_D_", input$groupMA, ".html")  
                },
                content = function(file) {
                    htmlwidgets::saveWidget(
                        hoeffDPlot(hoeffD_df(), lines = input$hDLines), file)
                }
            )
        }
    )
}

################################################################################
##################################### ECDF #####################################
################################################################################

#' @name tP_ECDFUI
#' 
#' @title Tab panel UI for tab panel 'ECDF'
#' 
#' @description 
#' The module defines the UI in the tab panel 'ECDF'
#'  
#' @details 
#' \code{tP_ECDFUI} returns the HTML code for the tab-pane 'ECDF'. 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character} 
#'
#' @return
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' tP_ECDFUI("test")
#' 
#' @importFrom shiny NS tabPanel plotOutput fluidRow column downloadButton
#' @importFrom shinyhelper helper
#' 
#' @noRd
tP_ECDFUI <- function(id) {
    
    ns <- shiny::NS(id)
    shiny::tabPanel(title = "ECDF",
        shiny::plotOutput(outputId = ns("ECDF")) |> 
            shinyhelper::helper(content = "tabPanel_ecdf"),
        shiny::downloadButton(outputId = ns("downloadPlot"), ""),
        shiny::fluidRow( 
            shiny::column(4, 
                shiny::selectInput(inputId = ns("typeECDF"),
                    label = "Data set for the ECDF plot", choices = "raw")),
            shiny::column(4, 
                shiny::selectInput(inputId = ns("sampleECDF"), 
                    label = "Sample", choices = "all_samples", 
                    selected = "sample")),
            shiny::column(4, 
                shiny::selectInput(inputId = ns("groupECDF"), 
                    label = "group", choices = "all"))
        )
    )

}

#' @name ECDFServer
#' 
#' @title Module for server expressions of tab panel 'ECDF'
#' 
#' @description 
#' The module defines the server expressions in the tab panel 'ECDF'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param se \code{SummarizedExperiment} object and \code{reactive} value, containing 
#' raw values
#' @param se_n \code{SummarizedExperiment} object and \code{reactive} value, containing 
#' normalized values
#' @param se_b \code{SummarizedExperiment} object and \code{reactive} value, containing
#' batch corrected values
#' @param se_t \code{SummarizedExperiment} object and \code{reactive} value, containing 
#' transformed values
#' @param se_i \code{SummarizedExperiment} object and \code{reactive} value, containing 
#' imputed values
#' @param missingValue \code{logical} (if \code{FALSE} do not show option for imputed)
#' 
#' @return
#' \code{shiny.render.function} expression
#' 
#' @importFrom shiny moduleServer updateSelectInput reactive
#' @importFrom shiny downloadHandler renderPlot
#' @importFrom ggplot2 ggsave
#' @importFrom SummarizedExperiment colData
#' @importFrom tibble rownames_to_column
#'
#' @author Thomas Naake
#' 
#' @noRd
ECDFServer <- function(id, se, se_n, se_b, se_t, se_i, missingValue) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {
            
            shiny::observe({
                if (missingValue) {
                    data_l <- list("raw", "normalized", "batch corrected",
                                            "transformed", "imputed")
                } else {
                    data_l <- list("raw", "normalized", "batch corrected",
                                            "transformed")
                }
                shiny::updateSelectInput(session = session, 
                    inputId = "typeECDF", choices = data_l)
            })
            
            shiny::observe({
                cD_rn <- se() |> colnames()
                shiny::updateSelectInput(session = session,
                    inputId = "sampleECDF", choices = cD_rn)
            })
            
            shiny::observe({
                updateSelectInput(
                    inputId = "groupECDF", 
                    choices = c("all", colnames(se()@colData)))
            })
            
            ## ECDF plots: se, sample, group
            se_sel <- shiny::reactive({
                if (input$typeECDF == "raw") SE <- se()
                if (input$typeECDF == "normalized") SE <- se_n()
                if (input$typeECDF == "batch corrected") SE <- se_b()
                if (input$typeECDF == "transformed") SE <- se_t()
                if (input$typeECDF == "imputed") SE <- se_i()
                SE
            })
            
            p_ecdf <- shiny::reactive({
                ECDF(se = se_sel(), sample = input$sampleECDF, 
                    group = input$groupECDF)
            })
            
            output$ECDF <- shiny::renderPlot({
                p_ecdf()
            })
            
            output$downloadPlot <- shiny::downloadHandler(
                filename = function() {
                    paste("ECDF_", input$typeECDF, "_", input$groupECDF, "_", 
                        input$sampleECDF, ".pdf", sep = "")
                },
                content = function(file) {
                    ggplot2::ggsave(file, p_ecdf(), device = "pdf", 
                        limitsize = FALSE)
                }
            )
        }
    )
}


################################################################################
################################### distances ##################################
################################################################################

#' @name fR_distUI
#' 
#' @title Fluid row UI for tab panel 'Distance matrix'
#' 
#' @description
#' The module defines the UI in the tab panel 'Distance matrix'.
#' 
#' @details 
#' \code{fR_distUI} returns the HTML code for the tab-pane 'Distance Matrix'. 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param title \code{character} name/title of the box
#' @param collapsed \code{logical}
#' 
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' fR_distUI("test", "test")
#' 
#' @importFrom shiny NS fluidRow downloadButton column
#' @importFrom shinydashboard box
#' @importFrom plotly plotlyOutput
#' @importFrom shinyhelper helper
#' 
#' @noRd
fR_distUI <- function(id, title, collapsed = TRUE) {
    ns <- shiny::NS(id)
    shiny::fluidRow(
        shinydashboard::box(title = title, width = 12, 
            collapsible = TRUE, collapsed = collapsed, 
            shiny::column(6, 
                shiny::plotOutput(outputId = ns("distSample")),
                shiny::downloadButton(outputId = ns("downloadPlotDist"), "")),
            shiny::column(6, 
                plotly::plotlyOutput(outputId = ns("distSampleSum")),
                shiny::downloadButton(outputId = ns("downloadPlotSum"), ""))))  
    
}

#' @name tP_distUI
#' 
#' @title Tab panel UI for tab panel 'Distance matrix'
#' 
#' @description
#' The function defines the UI in the tab panel 'Distance matrix'. It serves
#' as a wrapper for \code{fR_distUI}.
#' 
#' @details 
#' \code{tP_distUI} returns the HTML code for the tab-pane 'Distance matrix'. 
#' Internal function for \code{shinyQC}.
#' 
#' @param missingValue \code{logical} (if \code{FALSE} do not show box for imputed)
#' 
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples 
#' tP_distUI()
#' 
#' @importFrom shiny tabPanel fluidRow column selectInput br
#' @importFrom shinydashboard box
#'
#' @noRd
tP_distUI <- function() {

    shiny::tabPanel(title = "Distance matrix",
        br() |> shinyhelper::helper(content = "tabPanel_distMat"),
        fR_distUI(id = "distRaw", title = "raw", collapsed = FALSE),
        fR_distUI(id = "distNorm", title = "normalized", collapsed = TRUE),
        fR_distUI(id = "distBatch", title = "batch corrected", 
            collapsed = TRUE),
        fR_distUI(id = "distTransf", title = "transformed", collapsed = TRUE),
        shiny::conditionalPanel("output.missingVals == 'TRUE'",
            fR_distUI(id = "distImp", title = "imputed", collapsed = TRUE)),
        shiny::fluidRow(
            shinydashboard::box(title = "Parameters", width = 6,
                collapsible = TRUE, collapsed = FALSE,
                shiny::column(12, 
                    shiny::selectInput(inputId = "groupDist", 
                        label = "annotation", choices = "name")),
                shiny::column(12, 
                shiny::selectInput(inputId = "methodDistMat", 
                    label = "distance method", 
                    choices = c("euclidean", "maximum", "canberra", 
                        "minkowski"), 
                    selected = "euclidean"))
            )
        )
    )
}

#' @name distServer
#' 
#' @title Module for server expressions of tab panel 'Distance matrix'
#' 
#' @description 
#' The module defines the server expressions in the tab panel 'Distance matrix'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param se \code{SummarizedExperiment} object and \code{reactive} value
#' @param assay \code{matrix} and \code{reactive} value
#' @param method \code{character} and \code{reactive} value, one of \code{"euclidean"}, 
#' \code{"mannhattan"}, \code{"canberra"}, or \code{"minkowski"}
#' @param label \code{character} and \code{reactive} value, specified the annotation of 
#' the \code{ComplexHeatmap}
#' @param type \code{character}
#' 
#' @return
#' \code{shiny.render.function} expression
#'
#' @author Thomas Naake
#' 
#' @importFrom shiny moduleServer reactive downloadHandler req
#' @importFrom plotly renderPlotly partial_bundle
#' @importFrom htmlwidgets saveWidget
#' @importFrom ComplexHeatmap draw
#' @importFrom grDevices pdf dev.off
#' 
#' 
#' @noRd
distServer <- function(id, se, assay, method, label, type) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {

            d <- shiny::reactive({
                distShiny(assay(), method = method())
            })
            
            ## plot of distance matrix
            p_dist <- shiny::reactive({
                distSample(d(), se(), label = label(), title = "") 
            })
            
            output$distSample <- shiny::renderPlot({
                shiny::req(label())
                p_dist()  
            })
            
            output$downloadPlotDist <- shiny::downloadHandler(
                filename = function() {
                    paste("Distance_", type, "_", method(), ".pdf", sep = "")
                },
                content = function(file) {
                    grDevices::pdf(file)
                    p = p_dist()
                    ComplexHeatmap::draw(p)
                    grDevices::dev.off()
                    ##htmlwidgets::saveWidget(partial_bundle(p_dist()), file)
                }
            )
            
            ## plot of sum of distances
            p_sumDist <- shiny::reactive({
                sumDistSample(d(), title = "")
            })
            
            output$distSampleSum <- plotly::renderPlotly({
                p_sumDist()
            })

            output$downloadPlotSum <- shiny::downloadHandler(
                filename = function() {
                    paste("Sum_distance_", type, "_", 
                        method(), ".html", sep = "")
                },
                content = function(file) {
                    htmlwidgets::saveWidget(partial_bundle(p_sumDist()), file)
                }
            )
        }
    )
    
}

################################################################################
################################### Features ###################################
################################################################################

#' @name tP_featureUI
#' 
#' @title UI for tab panel 'Features'
#' 
#' @description
#' The module defines the UI in the tab panel 'Features'.
#' 
#' @details 
#' \code{tP_featureUI} returns the HTML code for the tab-pane 'Distance Matrix'. 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param title \code{character} name/title of the box
#' @param collapsed \code{logical}
#' 
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' fR_distUI("test", "test")
#' 
#' @importFrom shiny NS tabPanel plotOutput column radioButtons 
#' @importFrom shiny selectizeInput checkboxInput downloadButton
#' @importFrom shinydashboard box
#' @importFrom plotly plotlyOutput
#' @importFrom shinyhelper helper
#' 
#' @noRd
tP_featureUI <- function(id) {
    ns <- shiny::NS(id)
    shiny::tabPanel(title = "Features",
        br() |> shinyhelper::helper(content = "tabPanel_Features"),
        shinydashboard::box(title = "", width = 12, collapsible = TRUE, 
            collapsed = FALSE,
            shiny::plotOutput(outputId = ns("Features")),
            shiny::column(4, 
                shiny::downloadButton(outputId = ns("downloadPlot"), "")),
            shiny::column(4, 
                shiny::selectInput(inputId = ns("data"), 
                    label = "Data set", choices = "raw", multiple = TRUE, 
                    selected = "raw")),
            shiny::column(4, 
                shiny::selectizeInput(inputId = ns("selectFeature"), 
                    choices = NULL, label = "Select feature"))
        ),
        shinydashboard::box(title = "", width = 12, collapsible = TRUE, 
            collapsed = FALSE,
            plotly::plotlyOutput(outputId = ns("FeaturesCV")),
            shiny::column(6, 
                shiny::downloadButton(outputId = ns("downloadPlotCV"), "")),
            shiny::column(6, 
                shiny::checkboxInput(inputId = ns("FeatureLines"),
                label = "lines", value = FALSE))
        ),
        shiny::radioButtons(inputId = ns("mode"), label = "Select features",
            choices = list("all" = "all", "exclude" = "exclude", 
                                                        "select" = "select")),
        shiny::selectizeInput(inputId = ns("excludeFeature"), choices = NULL, 
            label = NULL, multiple = TRUE)
    ) 
}

#' @name featureServer
#' 
#' @title Module for server expressions of tab panel 'Features'
#' 
#' @description 
#' The module defines the server expressions in the tab panel 'Features'.
#' 
#' @details 
#' Internal function for \code{shinyQC}.
#' 
#' @param id \code{character}
#' @param se \code{SummarizedExperiment} object
#' @param a \code{matrix} and \code{reactive} value, containing raw values
#' @param a_n \code{matrix} and \code{reactive} value, containing 
#' normalized values
#' @param a_b \code{matrix} and \code{reactive} value, containing 
#' batch corrected values
#' @param a_t \code{matrix} and \code{reactive} value, containing 
#' transformed values
#' @param a_i \code{matrix} and \code{reactive} value, containing 
#' imputed values
#' @param missingValue \code{logical} (if \code{FALSE} do not show option for 
#' imputed)
#' 
#' @return
#' \code{shiny.render.function} expression
#'
#' @author Thomas Naake
#' 
#' @importFrom shiny moduleServer observe updateSelectizeInput updateSelectInput  
#' @importFrom shiny reactive req renderPlot downloadHandler
#' @importFrom ggplot2 ggsave
#' @importFrom plotly renderPlotly
#' @importFrom htmlwidgets saveWidget 
#'
#' @noRd
featureServer <- function(id, se, a, a_n, a_b, a_t, a_i, missingValue) {
    
    shiny::moduleServer(
        id, 
        function(input, output, session) {

            shiny::observe({
                shiny::updateSelectizeInput(session = session, 
                    inputId = "selectFeature", 
                    choices = as.list(rownames(a())), server = TRUE)
            })

            shiny::observe({
                shiny::updateSelectizeInput(session = session, 
                    inputId = "excludeFeature", 
                    choices = rownames(se), server = TRUE)  
            })
            

            shiny::observe({
                if (missingValue) {
                    choices_l <-  c("raw", "normalized", "batch.corrected",
                        "transformed", "imputed")   
                } else {
                    choices_l <- c("raw", "normalized", "batch.corrected",
                        "transformed")
                }
                shiny::updateSelectInput(inputId = "data", 
                    label = "Data set", choices = choices_l,
                    selected = choices_l)
            })
            
            ## create a reactive data.frame containing the assay values
            l_assays <- shiny::reactive({
                shiny::req(a_i())
                if (missingValue) {
                    l <- list(raw = a(), normalized = a_n(),
                        `batch.corrected` = a_b(), transformed = a_t(), 
                        imputed = a_i())
                } else {
                    l <- list(raw = a(), normalized = a_n(),
                        `batch.corrected` = a_b(), transformed = a_t())
                }
                l
            })
            
            df_feature <- shiny::reactive({
                l <- l_assays()
                l <- l[names(l) %in% input$data]
                if (length(l) > 0) {
                    createDfFeature(l, feature = input$selectFeature)
                } else {
                    NULL
                }
            })
                
            p_feature <- shiny::reactive({
                if (!is.null(df_feature()))
                    featurePlot(df_feature())
            })
            
            output$Features <- shiny::renderPlot({
                p_feature()
            })
            
            output$downloadPlot <- shiny::downloadHandler(
                filename = function() {
                    paste("Features_", input$selectFeature, ".pdf", sep = "")
                },
                content = function(file) {
                    ggplot2::ggsave(file, p_feature(), device = "pdf",
                        limitsize = FALSE)
                }
            )
            
            output$FeaturesCV <- plotly::renderPlotly({
                cvFeaturePlot(l_assays(), lines = input$FeatureLines)
            })
            
            output$downloadPlotCV <- shiny::downloadHandler(
                filename = function() {
                    paste("Features_CV_lines_", input$FeatureLines, 
                                                            ".html", sep = "")
                },
                content = function(file) {
                    htmlwidgets::saveWidget(
                        cvFeaturePlot(l_assays(), lines = input$FeatureLines),
                        file)
                }
            )
        }
    )
}

#' @name tP_values_all
#' 
#' @title Tab panel UI for tab panel 'Values'
#' 
#' @description  
#' The module defines the UI for the tab panel 'Values'.
#' 
#' @details 
#' \code{tP_values_all} returns the HTML code for the tab-pane 'Values'. 
#' Internal function for \code{shinyQC}.
#' 
#' @return 
#' \code{shiny.tag} with HTML content
#'
#' @author Thomas Naake
#' 
#' @examples
#' tP_values_all()
#' 
#' @importFrom shiny tabPanel 
#' @importFrom shinydashboard tabBox
#' 
#' @noRd
tP_values_all <- function() {
    shiny::tabPanel("Values",
        shinydashboard::tabBox(title = "", width = 12,
            tP_boxplotUI(id = "boxUI"),
            tP_driftUI(id = "drift"),
            tP_cvUI(id = "cv"),
            tP_meanSdUI(id = "meanSd"),
            tP_maUI(id = "MA"),
            tP_ECDFUI(id = "ECDF"),
            tP_distUI(),
            tP_featureUI(id = "features")
        )
    )
}
tnaake/MatrixQCvis documentation built on Nov. 4, 2024, 7:42 a.m.