# nocov
make_pls_mixOmics <- function() {
parsnip::set_model_engine("pls", "classification", "mixOmics")
parsnip::set_model_engine("pls", "regression", "mixOmics")
parsnip::set_dependency("pls", "mixOmics", "mixOmics", "classification")
parsnip::set_dependency("pls", "mixOmics", "mixOmics", "regression")
parsnip::set_dependency("pls", "mixOmics", "plsmod", "classification")
parsnip::set_dependency("pls", "mixOmics", "plsmod", "regression")
parsnip::set_model_arg(
model = "pls",
eng = "mixOmics",
parsnip = "predictor_prop",
original = "predictor_prop",
func = list(pkg = "dials", fun = "predictor_prop"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "pls",
eng = "mixOmics",
parsnip = "num_comp",
original = "ncomp",
func = list(pkg = "dials", fun = "num_comp", range = c(1, 4)),
has_submodel = TRUE
)
parsnip::set_fit(
model = "pls",
eng = "mixOmics",
mode = "regression",
value = list(
interface = "matrix",
protect = c("x", "y"),
func = c(pkg = "plsmod", fun = "pls_fit"),
defaults = list()
)
)
parsnip::set_encoding(
model = "pls",
eng = "mixOmics",
mode = "regression",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "pls",
eng = "mixOmics",
mode = "classification",
value = list(
interface = "matrix",
protect = c("x", "y"),
func = c(pkg = "plsmod", fun = "pls_fit"),
defaults = list()
)
)
parsnip::set_encoding(
model = "pls",
eng = "mixOmics",
mode = "classification",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
parsnip::set_pred(
model = "pls",
eng = "mixOmics",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = single_numeric_preds,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
dist = "mahalanobis.dist"
)
)
)
parsnip::set_pred(
model = "pls",
eng = "mixOmics",
mode = "regression",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
dist = "mahalanobis.dist"
)
)
)
parsnip::set_pred(
model = "pls",
eng = "mixOmics",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = single_class_preds,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
dist = "mahalanobis.dist"
)
)
)
parsnip::set_pred(
model = "pls",
eng = "mixOmics",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = single_prob_preds,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
dist = "mahalanobis.dist"
)
)
)
parsnip::set_pred(
model = "pls",
eng = "mixOmics",
mode = "classification",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
dist = "mahalanobis.dist"
)
)
)
}
# nocov end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.