R/18_mzIdentify_mass_dataset.R

Defines functions mzIdentify_mass_dataset

Documented in mzIdentify_mass_dataset

#' Metabolite Identification in a mass_dataset Object Using MS1 Data
#'
#' This function identifies potential metabolites in a `mass_dataset` object by matching MS1 data (m/z) with a reference spectral database. Optionally, retention time (RT) can also be used for more accurate matching.
#'
#' @param object A `mass_dataset` object that contains MS1 data.
#' @param ms1.match.ppm A numeric value specifying the mass accuracy threshold for MS1 matching in parts per million (ppm). Defaults to `25`.
#' @param rt.match.tol A numeric value specifying the retention time matching tolerance in seconds. Defaults to `30`. If set to a large value (e.g., greater than `10000`), RT matching will not be performed.
#' @param polarity A character string specifying the ionization mode. It can be either `"positive"` or `"negative"`. Defaults to `"positive"`.
#' @param column A character string specifying the chromatographic column type, either `"hilic"` (hydrophilic interaction) or `"rp"` (reverse phase). Defaults to `"hilic"`.
#' @param candidate.num A numeric value specifying the number of top candidates to retain per feature. Defaults to `3`.
#' @param database A `databaseClass` object containing the reference spectral database for annotation.
#' @param threads An integer specifying the number of threads to use for parallel processing. Defaults to `3`.
#'
#' @return A data frame containing the metabolite identification results, including m/z error, RT error, matching scores, and information about the identified compounds.
#'
#' @details
#' This function performs MS1-based matching between the experimental data in the `mass_dataset` object and a reference spectral database. The matching process is based on mass-to-charge ratio (m/z) and optionally retention time (RT). The function supports both positive and negative ionization modes and can work with either HILIC or reverse-phase columns.
#'
#' @examples
#' \dontrun{
#' # Perform MS1-based metabolite identification in a mass_dataset object
#' identification_result <- mzIdentify_mass_dataset(
#'   object = mass_object,
#'   ms1.match.ppm = 20,
#'   rt.match.tol = 30,
#'   polarity = "positive",
#'   database = reference_database,
#'   threads = 4
#' )
#' }
#'
#' @author Xiaotao Shen
#' \email{xiaotao.shen@@outlook.com}
#' @importFrom dplyr filter mutate select distinct anti_join rename left_join arrange bind_cols bind_rows
#' @importFrom stringr str_extract str_replace str_detect
#' @importFrom purrr map
#' @importFrom furrr future_map
#' @importFrom tibble rownames_to_column
#' @importFrom tidyr pivot_longer
#' @importFrom future plan multisession
#' @importFrom progress progress_bar
#' @importFrom crayon yellow bgRed
#' @export


mzIdentify_mass_dataset <-
  function(object,
           ms1.match.ppm = 25,
           rt.match.tol = 30,
           polarity = c("positive", "negative"),
           column = c("hilic", "rp"),
           candidate.num = 3,
           database,
           threads = 3) {
    message("`mzIdentify_mass_dataset()` is deprecated.")
    options(warn = -1)
    ###Check data
    if (missing(database)) {
      stop("No database is provided.\n")
    }
    
    ##parameter specification
    polarity <- match.arg(polarity)
    column <- match.arg(column)
    ##check ms1.file and ms2.file
    if (!is(database, "databaseClass")) {
      stop("database should be databaseClass object.\n")
    }
    
    database.name <-
      paste(database@database.info$Source,
            database@database.info$Version,
            sep = "_")
    #------------------------------------------------------------------
    ##load adduct table
    if (polarity == "positive" & column == "hilic") {
      data("hilic.pos", envir = environment())
      adduct.table <- hilic.pos
    }
    
    if (polarity == "positive" & column == "rp") {
      data("rp.pos", envir = environment())
      adduct.table <- rp.pos
    }
    
    if (polarity == "negative" & column == "hilic") {
      data("hilic.neg", envir = environment())
      adduct.table <- hilic.neg
    }
    
    if (polarity == "negative" & column == "rp") {
      data("rp.neg", envir = environment())
      adduct.table <- rp.neg
    }
    
    ms1.data <-
      object@variable_info %>%
      dplyr::rename(name = variable_id)
    
    if (rt.match.tol > 10000) {
      message(crayon::yellow("You set rt.match.tol as NA, so RT will not be used for matching."))
    } else{
      message(
        crayon::yellow(
          "You set rt.match.tol < 10,000, so if the compounds have RT, RTs will be used for matching."
        )
      )
    }
    
    ms1_database <-
      database@spectra.info %>%
      dplyr::mutate(mz = as.numeric(mz)) %>%
      dplyr::filter(!is.na(mz)) %>%
      dplyr::distinct(Compound.name, .keep_all = TRUE)
    
    ###calculate the mz_matrix for all the compound with all adducts
    mz_matrix <-
      seq_len(nrow(adduct.table)) %>%
      purrr::map(function(i) {
        temp_n <-
          stringr::str_extract(string = adduct.table$adduct[i],
                               pattern = "[0-9]{1}M") %>%
          stringr::str_replace("M", "") %>%
          as.numeric()
        temp_n[is.na(temp_n)] <- 1
        temp <-
          data.frame(as.numeric(adduct.table$mz[i]) + temp_n * as.numeric(ms1_database$mz))
        colnames(temp) <- i
        temp
      }) %>%
      dplyr::bind_cols()
    
    colnames(mz_matrix) <-
      adduct.table$adduct
    
    rownames(mz_matrix) <-
      ms1_database$Lab.ID
    
    mz_rt_matrix <-
      mz_matrix %>%
      tibble::rownames_to_column(var = "Lab.ID") %>%
      tidyr::pivot_longer(cols = -c(Lab.ID),
                          names_to = "Adduct",
                          values_to = "mz") %>%
      dplyr::left_join(ms1_database[, c("Lab.ID", "RT")],
                       by = "Lab.ID")
    
    rm(list = "mz_matrix")
    gc()
    
    ###mz and rt match
    # pb <- progress::progress_bar$new(total = nrow(ms1.data))
    future::plan(strategy = future::multisession, workers = threads)
    
    match_result <-
      seq_len(nrow(ms1.data)) %>%
      furrr::future_map(function(i) {
        # pb$tick()
        # cat(i, " ")
        mz_rt_matrix %>%
          dplyr::mutate(variable_id = ms1.data$name[i]) %>%
          dplyr::mutate(mz.error = abs(ms1.data$mz[i] - mz) * 10 ^ 6 / ifelse(ms1.data$mz[i] < 400, 400, ms1.data$mz[i])) %>%
          dplyr::mutate(RT.error = abs(ms1.data$rt[i] - RT)) %>%
          dplyr::filter(mz.error < ms1.match.ppm) %>%
          dplyr::filter(is.na(RT.error) |
                          RT.error < rt.match.tol) %>%
          dplyr::select(variable_id, Lab.ID, Adduct, mz.error, RT.error) %>%
          dplyr::arrange(mz.error, RT.error) %>%
          head(candidate.num)
      }, .progress = TRUE)
    
    match_result <-
      match_result %>%
      dplyr::bind_rows() %>%
      dplyr::mutate(Database = database.name) %>%
      dplyr::mutate(ms2_files_id = NA,
                    ms2_spectrum_id = NA) %>%
      dplyr::select(variable_id,
                    ms2_files_id,
                    ms2_spectrum_id,
                    dplyr::everything())
    
    match_result$mz.match.score <-
      exp(-0.5 * (match_result$mz.error / (ms1.match.ppm)) ^ 2)
    
    if (rt.match.tol > 10000) {
      match_result$RT.error <- NA
      match_result$RT.match.score <- NA
      match_result$Total.score <- match_result$mz.match.score
    } else{
      match_result$RT.match.score <-
        exp(-0.5 * (match_result$RT.error / (rt.match.tol)) ^ 2)
      match_result$Total.score <-
        match_result$mz.match.score * 0.5 +
        match_result$RT.match.score * 0.5
      match_result$Total.score[is.na(match_result$Total.score)] <-
        match_result$mz.match.score[is.na(match_result$Total.score)]
    }
    
    match_result$CE <-
      match_result$SS <-
      NA
    
    match_result <-
      match_result %>%
      dplyr::left_join(ms1_database[, c("Lab.ID",
                                        "Compound.name",
                                        "CAS.ID",
                                        "HMDB.ID",
                                        "KEGG.ID",
                                        "Formula")],
                       by = "Lab.ID")
    
    match_result <-
      match_result %>%
      dplyr::select(
        "variable_id",
        "ms2_files_id",
        "ms2_spectrum_id",
        "Compound.name",
        "CAS.ID",
        "HMDB.ID",
        "KEGG.ID",
        "Lab.ID",
        "Adduct",
        "mz.error",
        "mz.match.score",
        "RT.error",
        "RT.match.score",
        "CE",
        "SS",
        "Total.score",
        "Database",
        dplyr::everything()
      )
    
    ####remove some impossible adducts
    adduct_check <-
      match_result %>%
      dplyr::select(Formula, Adduct) %>%
      dplyr::distinct(Formula, Adduct) %>%
      dplyr::filter(stringr::str_detect(Adduct, "(-H2O)|(-2H2O)")) %>%
      dplyr::mutate(minus_h2o_number = stringr::str_extract(Adduct, "(-H2O)|(-2H2O)")) %>%
      dplyr::mutate(minus_h2o_number = stringr::str_replace(minus_h2o_number, "(H2O)", "")) %>%
      dplyr::mutate(minus_h2o_number = stringr::str_replace(minus_h2o_number, "-", "")) %>%
      dplyr::mutate(minus_h2o_number = as.numeric(minus_h2o_number))
    
    adduct_check$minus_h2o_number[is.na(adduct_check$minus_h2o_number)] <-
      1
    
    adduct_check <-
      adduct_check %>%
      dplyr::mutate(
        h_number = stringr::str_extract(Formula, "H[0-9]{1,2}") %>%
          stringr::str_replace("H", "") %>%
          as.numeric()
      ) %>%
      dplyr::mutate(
        o_number = stringr::str_extract(Formula, "O[0-9]{1,2}") %>%
          stringr::str_replace("O", "") %>%
          as.numeric()
      )
    
    adduct_check$h_number[is.na(adduct_check$h_number)] <- 0
    adduct_check$o_number[is.na(adduct_check$o_number)] <- 0
    
    adduct_check <-
      adduct_check %>%
      dplyr::mutate(h_diff = h_number - minus_h2o_number * 2,
                    o_diff = o_number - minus_h2o_number) %>%
      dplyr::filter(h_diff < 0 | o_diff < 0)
    
    if (nrow(adduct_check) > 0) {
      match_result <-
        match_result %>%
        dplyr::anti_join(adduct_check, by = c("Formula", "Adduct"))
    }
    match_result <-
      match_result %>%
      dplyr::select(-Formula) %>%
      as.data.frame()
    message()
    message(crayon::bgRed("All done."))
    return(match_result)
  }


#' #' @title Identify peaks based on MS1 database
#' #' @description Identify peaks based on MS1 database.
#' #' @author Xiaotao Shen
#' #' \email{xiaotao.shen@@outlook.com}
#' #' @param object A mass_dataset class object.
#' #' @param ms1.match.ppm Precursor match ppm tolerance.
#' #' @param rt.match.tol RT match tolerance.
#' #' @param polarity The polarity of data, "positive"or "negative".
#' #' @param column "hilic" (HILIC column) or "rp" (reverse phase).
#' #' @param candidate.num The number of candidates.
#' #' @param database MS1 database name or MS1 database.
#' #' @param threads Number of threads
#' #' @return A mzIdentifyClass or metIdentifyClass object.
#' #' @importFrom magrittr %>%
#' #' @importFrom dplyr pull filter
#' #' @export
#' #' @seealso The example and demo data of this function can be found
#' #' \url{https://tidymass.github.io/metid/articles/metid.html}
#' 
#' 
#' mzIdentify_mass_dataset2 <-
#'   function(object,
#'            ms1.match.ppm = 25,
#'            rt.match.tol = 30,
#'            polarity = c("positive", "negative"),
#'            column = c("hilic", "rp"),
#'            candidate.num = 3,
#'            database,
#'            threads = 3) {
#'     options(warn = -1)
#'     ###Check data
#'     if (missing(database)) {
#'       stop("No database is provided.\n")
#'     }
#'     
#'     ##parameter specification
#'     polarity <- match.arg(polarity)
#'     column <- match.arg(column)
#'     ##check ms1.file and ms2.file
#'     if (!is(database, "databaseClass")) {
#'       stop("database should be databaseClass object.\n")
#'     }
#'     
#'     database.name <-
#'       paste(database@database.info$Source,
#'             database@database.info$Version,
#'             sep = "_")
#'     #------------------------------------------------------------------
#'     ##load adduct table
#'     if (polarity == "positive" & column == "hilic") {
#'       data("hilic.pos", envir = environment())
#'       adduct.table <- hilic.pos
#'     }
#'     
#'     if (polarity == "positive" & column == "rp") {
#'       data("rp.pos", envir = environment())
#'       adduct.table <- rp.pos
#'     }
#'     
#'     if (polarity == "negative" & column == "hilic") {
#'       data("hilic.neg", envir = environment())
#'       adduct.table <- hilic.neg
#'     }
#'     
#'     if (polarity == "negative" & column == "rp") {
#'       data("rp.neg", envir = environment())
#'       adduct.table <- rp.neg
#'     }
#'     
#'     ms1.data <-
#'       object@variable_info %>%
#'       dplyr::rename(name = variable_id)
#'     
#'     if (rt.match.tol > 10000) {
#'       message(crayon::yellow("You set rt.match.tol as NA, so RT will not be used for matching."))
#'     } else{
#'       message(
#'         crayon::yellow(
#'           "You set rt.match.tol < 10,000, so if the compounds have RT,  RTs will be used for matching."
#'         )
#'       )
#'     }
#'     
#'     temp.fun <-
#'       function(idx,
#'                ms1.data,
#'                ms1.match.ppm = 25,
#'                rt.match.tol = 30,
#'                database,
#'                adduct.table,
#'                candidate.num = 3) {
#'         temp_mz <-
#'           as.numeric(ms1.data$mz[idx])
#'         temp_rt <-
#'           as.numeric(ms1.data$rt[idx])
#'         
#'         rm(list = c("ms1.data"))
#'         
#'         temp_mz_diff1 <- abs(temp_mz - as.numeric(database$mz))
#'         temp_mz_diff2 <- abs(temp_mz - as.numeric(database$mz) * 2)
#'         temp_mz_diff3 <- abs(temp_mz - as.numeric(database$mz) * 3)
#'         
#'         temp_mz_diff1[is.na(temp_mz_diff1)] <- 100000
#'         temp_mz_diff2[is.na(temp_mz_diff2)] <- 100000
#'         temp_mz_diff3[is.na(temp_mz_diff3)] <- 100000
#'         
#'         max_mz_diff <-
#'           max(abs(adduct.table$mz)) + 1
#'         
#'         database <-
#'           database[which(
#'             temp_mz_diff1 < max_mz_diff |
#'               temp_mz_diff2 < max_mz_diff |
#'               temp_mz_diff3 < max_mz_diff
#'           )
#'           , , drop = FALSE]
#'         
#'         rm(list = c("temp_mz_diff1", "temp_mz_diff2", "temp_mz_diff3"))
#'         
#'         if (nrow(database) == 0) {
#'           return(NA)
#'         }
#'         
#'         # spectra_mz <-
#'         #   purrr::map(as.data.frame(t(adduct.table)),
#'         #              function(x) {
#'         #                temp_n <-
#'         #                  stringr::str_extract(string = as.character(x[1]),
#'         #                                       pattern = "[0-9]{1}M")
#'         #                temp_n <-
#'         #                  as.numeric(stringr::str_replace(
#'         #                    string = temp_n,
#'         #                    pattern = "M",
#'         #                    replacement = ""
#'         #                  ))
#'         #                temp_n[is.na(temp_n)] <- 1
#'         #                as.numeric(x[2]) + temp_n * as.numeric(database$mz)
#'         #              }) %>%
#'         #   do.call(cbind, .)
#'         
#'         spectra_mz <-
#'           seq_len(nrow(adduct.table)) %>%
#'           purrr::map(function(i) {
#'             temp_n <-
#'               stringr::str_extract(string = adduct.table$adduct[i],
#'                                    pattern = "[0-9]{1}M") %>%
#'               stringr::str_replace("M", "") %>%
#'               as.numeric()
#'             temp_n[is.na(temp_n)] <- 1
#'             as.numeric(adduct.table$mz[i]) + temp_n * as.numeric(database$mz)
#'           }) %>%
#'           do.call(cbind, .) %>%
#'           as.data.frame()
#'         
#'         colnames(spectra_mz) <- adduct.table$adduct
#'         rownames(spectra_mz) <- database$Lab.ID
#'         
#'         ###mz match
#'         temp <-
#'           abs(spectra_mz - temp_mz) * 10 ^ 6 / ifelse(temp_mz < 400, 400, temp_mz)
#'         
#'         temp_idx <-
#'           which(temp < ms1.match.ppm, arr.ind = TRUE) %>%
#'           as.data.frame()
#'         
#'         if (nrow(temp_idx) == 0) {
#'           return(NA)
#'         }
#'         
#'         match_idx <-
#'           seq_len(nrow(temp_idx)) %>%
#'           purrr::map(function(i) {
#'             data.frame(
#'               "Lab.ID" = rownames(spectra_mz)[temp_idx$row[i]],
#'               "Addcut" = colnames(spectra_mz)[temp_idx$col[i]],
#'               "mz.error" = temp[temp_idx$row[i], temp_idx$col[i]],
#'               stringsAsFactors = FALSE
#'             )
#'           })
#'         
#'         rm(list = c("spectra_mz", "adduct.table", "temp", "temp_idx"))
#'         
#'         ##remove some none matched
#'         match_idx <-
#'           match_idx[which(unlist(lapply(match_idx, function(x) {
#'             nrow(x)
#'           })) != 0)]
#'         
#'         if (length(match_idx) == 0) {
#'           return(NA)
#'         }
#'         
#'         match_idx <-
#'           match_idx %>%
#'           dplyr::bind_rows() %>%
#'           dplyr::arrange(mz.error)
#'         
#'         # match_idx <- data.frame(rownames(match_idx),
#'         # match_idx, stringsAsFactors = FALSE)
#'         colnames(match_idx) <-
#'           c("Lab.ID", "Adduct", "mz.error")
#'         
#'         ##rt match
#'         RT.error <-
#'           abs(temp_rt - as.numeric(database$RT)[match(match_idx$Lab.ID, database$Lab.ID)])
#'         
#'         match_idx <- data.frame(match_idx, RT.error,
#'                                 stringsAsFactors = FALSE)
#'         
#'         match_idx <-
#'           dplyr::filter(match_idx,
#'                         is.na(RT.error) | RT.error < rt.match.tol)
#'         
#'         if (nrow(match_idx) == 0) {
#'           return(NA)
#'         }
#'         
#'         if (nrow(match_idx) > candidate.num) {
#'           match_idx <- match_idx[seq_len(candidate.num), , drop = FALSE]
#'         }
#'         
#'         match_idx <-
#'           data.frame(match_idx,
#'                      database[match(match_idx$Lab.ID, database$Lab.ID),
#'                               c("Compound.name", "CAS.ID", "HMDB.ID", "KEGG.ID"),
#'                               drop = FALSE],
#'                      stringsAsFactors = FALSE)
#'         
#'         match_idx <-
#'           match_idx[, c(
#'             "Compound.name",
#'             "CAS.ID",
#'             "HMDB.ID",
#'             "KEGG.ID",
#'             "Lab.ID",
#'             "Adduct",
#'             "mz.error",
#'             'RT.error'
#'           )]
#'         
#'         rownames(match_idx) <- NULL
#'         return(match_idx)
#'       }
#'     
#'     if (masstools::get_os() == "windows") {
#'       bpparam = BiocParallel::SnowParam(workers = threads,
#'                                         progressbar = TRUE)
#'     } else{
#'       bpparam = BiocParallel::MulticoreParam(workers = threads,
#'                                              progressbar = TRUE)
#'     }
#'     
#'     if (is(database, "databaseClass")) {
#'       ms1_database <-
#'         database@spectra.info %>%
#'         dplyr::mutate(mz = as.numeric(mz)) %>%
#'         dplyr::filter(!is.na(mz)) %>%
#'         dplyr::distinct(Compound.name, .keep_all = TRUE)
#'     } else{
#'       ms1_database <-
#'         database
#'     }
#'     
#'     match_result <-
#'       BiocParallel::bplapply(
#'         seq_len(nrow(ms1.data)),
#'         FUN = temp.fun,
#'         BPPARAM = bpparam,
#'         ms1.data = ms1.data,
#'         ms1.match.ppm = ms1.match.ppm,
#'         rt.match.tol = rt.match.tol,
#'         database = ms1_database,
#'         adduct.table = adduct.table,
#'         candidate.num = candidate.num
#'       )
#'     
#'     names(match_result) <- ms1.data$name
#'     
#'     temp_idx <-
#'       which(unlist(lapply(match_result, function(x) {
#'         all(is.na(x))
#'       })))
#'     
#'     if (length(temp_idx) > 0) {
#'       match_result <- match_result[-temp_idx]
#'     }
#'     
#'     match_result <-
#'       seq_along(match_result) %>%
#'       purrr::map(function(i) {
#'         data.frame(variable_id = names(match_result)[i],
#'                    match_result[[i]])
#'       }) %>%
#'       dplyr::bind_rows() %>%
#'       dplyr::mutate(Database = database.name) %>%
#'       dplyr::mutate(ms2_files_id = NA,
#'                     ms2_spectrum_id = NA) %>%
#'       dplyr::select(variable_id,
#'                     ms2_files_id,
#'                     ms2_spectrum_id,
#'                     dplyr::everything())
#'     
#'     match_result$mz.match.score <-
#'       exp(-0.5 * (match_result$mz.error / (ms1.match.ppm)) ^ 2)
#'     
#'     if (rt.match.tol > 10000) {
#'       match_result$RT.error <- NA
#'       match_result$RT.match.score <- NA
#'       match_result$Total.score <- match_result$mz.match.score
#'     } else{
#'       match_result$RT.match.score <-
#'         exp(-0.5 * (match_result$RT.error / (rt.match.tol)) ^ 2)
#'       match_result$Total.score <-
#'         match_result$mz.match.score * 0.5 +
#'         match_result$RT.match.score * 0.5
#'       match_result$Total.score[is.na(match_result$Total.score)] <-
#'         match_result$mz.match.score[is.na(match_result$Total.score)]
#'     }
#'     
#'     match_result$CE <-
#'       match_result$SS <-
#'       NA
#'     
#'     match_result <-
#'       match_result %>%
#'       dplyr::select(
#'         "variable_id",
#'         "ms2_files_id",
#'         "ms2_spectrum_id",
#'         "Compound.name",
#'         "CAS.ID",
#'         "HMDB.ID",
#'         "KEGG.ID",
#'         "Lab.ID",
#'         "Adduct",
#'         "mz.error",
#'         "mz.match.score",
#'         "RT.error",
#'         "RT.match.score",
#'         "CE",
#'         "SS",
#'         "Total.score",
#'         "Database",
#'         dplyr::everything()
#'       )
#'     
#'     message(crayon::bgRed("All done."))
#'     return(match_result)
#'   }
tidymass/metid documentation built on Oct. 8, 2024, 10:32 p.m.