run_DESeq2 | R Documentation |
Convenience wrapper function to identify differentially expressed genes
(DEGs) in batch mode with DESeq2
for any number of pairwise sample
comparisons specified under the cmp
argument. Users are strongly
encouraged to consult the DESeq2
vignette for more detailed information
on this topic and how to properly run DESeq2
on data sets with more
complex experimental designs.
run_DESeq2(countDF, targets, cmp, independent = FALSE, lfcShrink=FALSE, type="normal")
countDF |
|
targets |
targets |
cmp |
|
independent |
If |
lfcShrink |
logiacal. If |
type |
please check |
data.frame
containing DESeq2
results from all comparisons. Comparison labels are appended to column titles for tracking.
Thomas Girke
Please properly cite the DESeq2
papers when using this function:
http://www.bioconductor.org/packages/devel/bioc/html/DESeq2.html
run_edgeR
, readComp
and DESeq2
vignette
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countfile <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countDF <- read.delim(countfile, row.names=1)
degseqDF <- run_DESeq2(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE)
pval <- degseqDF[, grep("_FDR$", colnames(degseqDF)), drop=FALSE]
fold <- degseqDF[, grep("_logFC$", colnames(degseqDF)), drop=FALSE]
DEG_list <- filterDEGs(degDF=degseqDF, filter=c(Fold=2, FDR=10))
names(DEG_list)
DEG_list$Summary
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.