setMethod("initialize", "cghCall",
function(.Object,
assayData = assayDataNew(copynumber=copynumber, segmented=segmented, calls=calls, probloss=probloss, probnorm=probnorm, probgain=probgain, ...),
phenoData = annotatedDataFrameFrom(assayData, byrow=FALSE),
featureData = CGHbase:::.makeEmptyFeatureData(assayData),
experimentData = new("MIAME"),
annotation = character(),
copynumber = new("matrix"),
segmented = new("matrix"),
calls = new("matrix"),
probloss = new("matrix"),
probnorm = new("matrix"),
probgain = new("matrix"),
... ) {
callNextMethod(.Object,
assayData = assayData,
phenoData = phenoData,
featureData = featureData,
experimentData = experimentData,
annotation = annotation)
})
setValidity("cghCall", function(object) {
msg <- Biobase:::validMsg(NULL, Biobase:::isValidVersion(object, "cghCall"))
msg <- Biobase:::validMsg(msg, Biobase:::assayDataValidMembers(assayData(object), c("copynumber",
"segmented",
"calls",
"probloss",
"probnorm",
"probgain"
)))
msg <- Biobase:::validMsg(msg, .featureDataRequiredColumns(featureData(object), c("Chromosome", "Start", "End")))
if (is.null(msg)) TRUE else msg
})
#probdloss <- function(object) Biobase:::assayDataElement(object, "probdloss")
setMethod("plot", signature(x="cghCall", y="missing"),
function (x, y, dotres=10, ylimit=c(-5,5), ylab=expression(log[2]~ratio), gaincol='green', losscol='red',ampcol="darkgreen",dlcol="darkred", misscol=NA, build='GRCh37',... )
{
#x<-calls2; dotres=100; ylimit=c(-5,5); ylab=expression(log[2]~ratio); gaincol='green'; losscol='red'; ampcol="darkgreen";dlcol="darkred"; misscol=NA; build='GRCh37'
calls <- calls(x)
nsamples <- ncol(x)
nclass <-3
if (!is.null(probamp(x))) nclass <- nclass+1
if (!is.null(probdloss(x))) nclass <- nclass+1
chrom <- chromosomes(x)
pos <- bpstart(x)
pos2 <- bpend(x)
uni.chrom <- unique(chrom)
chrom.lengths <- .getChromosomeLengths(build)[as.character(uni.chrom)]
chrom.ends <- integer()
cumul <- 0
for (j in uni.chrom) {
pos[chrom > j] <- pos[chrom > j] + chrom.lengths[as.character(j)]
pos2[chrom > j] <- pos2[chrom > j] + chrom.lengths[as.character(j)]
cumul <- cumul + chrom.lengths[as.character(j)]
chrom.ends <- c(chrom.ends, cumul)
}
names(chrom.ends) <- names(chrom.lengths)
nclone <- length(chrom)
chrom.labels <- unique(chrom)
for (i in 1:ncol(x)) {
#i<-1
cat("Plotting sample", sampleNames(x)[i], "\n")
inc <- 0
genomdat <- copynumber(x)[,i]
if(nclass==3) probsdraw <- cbind(probloss(x)[,i], probnorm(x)[,i], probgain(x)[,i])
if(nclass==4) probsdraw <- cbind(probloss(x)[,i], probnorm(x)[,i], probgain(x)[,i]+probamp(x)[,i])
if(nclass==5) {
probsdraw <- cbind(probloss(x)[,i]+probdloss(x)[,i], probnorm(x)[,i], probgain(x)[,i]+probamp(x)[,i])
inc <- 1
}
lt <- 0
ltdl <- 0
if (nclass>=4) {
ticksamp <- which(probamp(x)[,i] >= 0.5)
lt <- length(ticksamp)
}
if (nclass==5) {
ticksdl <- which(probdloss(x)[,i] >= 0.5)
ltdl <- length(ticksdl)
#print(ltdl)
}
segment <- .makeSegments(segmented(x)[,i],chromosomes(x))
widths <- segment[,3] - segment[,2] + 1
par(mar=c(5, 4, 4, 4) + 0.2)
### Plot the probability bars
plot(NA, xlim=c(0, max(pos2)), ylim=c(0,1), xlab=NA, ylab=NA, las=1, xaxs='i', xaxt='n', yaxs='i')
if (!is.na(misscol)) {
rect(0, -1, max(pos2), 1, col=misscol, border=NA)
rect(pos, -1, pos2, 1, col='white', border=NA)
}
rect(pos[segment[,2]], 0, pos2[segment[,3]], probsdraw[segment[,2],1], col=losscol, border=losscol)
rect(pos[segment[,2]], 1, pos2[segment[,3]], 1-probsdraw[segment[,2],3], col=gaincol, border=gaincol)
lim <- par("usr")
lim[3:4] <- ylimit
par(usr=lim)
dticks <- seq(ylimit[1], ylimit[2], by=1)
axis(4, at=dticks, labels=dticks, srt=270, las=1, cex.axis=1, cex.lab=1)
if (lt > 0) {
axis(3,at=pos[ticksamp], labels=FALSE, col=ampcol, col.axis="black", srt=270, las=1, cex.axis=1, cex.lab=1)
}
if (ltdl > 0) {
axis(3,at=pos[ticksdl], labels=FALSE, col=dlcol, col.axis="black", srt=270, las=1, cex.axis=1, cex.lab=1)
}
box()
abline(h=0)
### Add axis labels
mtext(ylab, side=4, line=3, srt=270)
mtext("probability", side=2, line=3, srt=270)
mtext('chromosomes', side=1, line=3)
#### add vert lines at chromosome ends
if (length(chrom.ends) > 1)
for (j in names(chrom.ends)[-length(chrom.ends)])
abline(v=chrom.ends[j], lty='dashed')
title(sampleNames(x)[i])
if (dotres != 1)
mtext(paste('Plot resolution: ', 100/dotres, '%', sep=''), side=3, line=0)
### Add log2ratios
if (dotres>0) {
whichtoplot <- seq(1,nclone,by=dotres) #added 15/06/2009
points(pos[whichtoplot],genomdat[whichtoplot],cex=.1)
}
### X-axis with chromosome labels
ax <- (chrom.ends + c(0, chrom.ends[-length(chrom.ends)])) / 2
axis(side=1,at=ax,labels=unique(chrom),cex=.2,lwd=.5,las=1,cex.axis=1,cex.lab=1)
### segment means
for (jjj in (1:nrow(segment)))
segments(pos[segment[jjj,2]], segment[jjj,1], pos[segment[jjj,3]], segment[jjj,1], col="chocolate", lwd=3)
### MAD
windowsize <- 50
x1 <- copynumber(x)[chromosomes(x) < 23,i]
elc <- length(x1)-200
if(elc>=1000){
seqs <- seq(1,elc, by=floor(elc/100))
mad.value <- round(median(sapply(seqs,function(wh) mad(x1[wh:(wh+windowsize)], na.rm=TRUE))), digits=2)
mtext(paste('MAD =', mad.value), side=3, line=0, adj=1)
}
### number of data points
str <- paste(round(nclone / 1000), 'k x ', sep='')
probe <- median(bpend(x)-bpstart(x)+1)
if (probe < 1000) {
str <- paste(str, probe, ' bp', sep='')
} else {
str <- paste(str, round(probe / 1000), ' kbp', sep='')
}
mtext(str, side=3, line=0, adj=0)
}
})
frequencyPlotCalls <-
function(x, main='Frequency Plot', gaincol='blue', losscol='red', misscol=NA, build='GRCh37',... )
{
chrom <- chromosomes(x)
pos <- bpstart(x)
pos2 <- bpend(x)
uni.chrom <- unique(chrom)
chrom.lengths <- .getChromosomeLengths(build)[as.character(uni.chrom)]
chrom.ends <- integer()
cumul <- 0
for (j in uni.chrom) {
pos[chrom > j] <- pos[chrom > j] + chrom.lengths[as.character(j)]
pos2[chrom > j] <- pos2[chrom > j] + chrom.lengths[as.character(j)]
cumul <- cumul + chrom.lengths[as.character(j)]
chrom.ends <- c(chrom.ends, cumul)
}
names(chrom.ends) <- names(chrom.lengths)
calls <- calls(x)
loss.freq <- rowMeans(calls < 0)
gain.freq <- rowMeans(calls > 0)
plot(NA, xlim=c(0, max(pos2)), ylim=c(-1,1), type='n', xlab='chromosomes', ylab='frequency', xaxs='i', xaxt='n', yaxs='i', yaxt='n', main=main,...)
if (!is.na(misscol)) {
rect(0, -1, max(pos2), 1, col=misscol, border=NA)
rect(pos, -1, pos2, 1, col='white', border=NA)
}
rect(pos, 0, pos2, gain.freq, col=gaincol, border=gaincol)
rect(pos, 0, pos2, -loss.freq, col=losscol, border=losscol)
box()
abline(h=0)
if (length(chrom.ends) > 1)
for (j in names(chrom.ends)[-length(chrom.ends)])
abline(v=chrom.ends[j], lty='dashed')
ax <- (chrom.ends + c(0, chrom.ends[-length(chrom.ends)])) / 2
axis(side=1,at=ax,labels=uni.chrom,cex=.2,lwd=.5,las=1,cex.axis=1,cex.lab=1)
axis(side=2, at=c(-1, -0.5, 0, 0.5, 1), labels=c('100 %', ' 50 %', '0 %', '50 %', '100 %'), las=1)
mtext('gains', side=2, line=3, at=0.5)
mtext('losses', side=2, line=3, at=-0.5)
### number of data points
str <- paste(round(nrow(x) / 1000), 'k x ', sep='')
probe <- median(bpend(x)-bpstart(x)+1)
if (probe < 1000) {
str <- paste(str, probe, ' bp', sep='')
} else {
str <- paste(str, round(probe / 1000), ' kbp', sep='')
}
mtext(str, side=3, line=0, adj=0)
}
summaryPlot <-
function (x, main='Summary Plot', gaincol='blue', losscol='red', misscol=NA, build='GRCh37',... )
{
chrom <- chromosomes(x)
pos <- bpstart(x)
pos2 <- bpend(x)
uni.chrom <- unique(chrom)
nclass <-3
if (!is.null(probamp(x))) nclass <- nclass+1
if (!is.null(probdloss(x))) nclass <- nclass+1
chrom.lengths <- .getChromosomeLengths(build)[as.character(uni.chrom)]
chrom.ends <- integer()
cumul <- 0
for (j in uni.chrom) {
pos[chrom > j] <- pos[chrom > j] + chrom.lengths[as.character(j)]
pos2[chrom > j] <- pos2[chrom > j] + chrom.lengths[as.character(j)]
cumul <- cumul + chrom.lengths[as.character(j)]
chrom.ends <- c(chrom.ends, cumul)
}
names(chrom.ends) <- names(chrom.lengths)
if(nclass==3) {loss.freq <- rowMeans(probloss(x)); gain.freq <- rowMeans(probgain(x))}
if(nclass==4) {loss.freq <- rowMeans(probloss(x)); gain.freq <- rowMeans(probgain(x))+rowMeans(probamp(x))}
if(nclass==5) {loss.freq <- rowMeans(probloss(x))+rowMeans(probdloss(x)); gain.freq <- rowMeans(probgain(x))+rowMeans(probamp(x))}
plot(NA, xlim=c(0, max(pos2)), ylim=c(-1,1), type='n', xlab='chromosomes', ylab='mean probability', xaxs='i', xaxt='n', yaxs='i', yaxt='n', main=main,...)
if (!is.na(misscol)) {
rect(0, -1, max(pos2), 1, col=misscol, border=NA)
rect(pos, -1, pos2, 1, col='white', border=NA)
}
rect(pos, 0, pos2, gain.freq, col=gaincol, border=gaincol)
rect(pos, 0, pos2, -loss.freq, col=losscol, border=losscol)
box()
abline(h=0)
if (length(chrom.ends) > 1)
for (j in names(chrom.ends)[-length(chrom.ends)])
abline(v=chrom.ends[j], lty='dashed')
ax <- (chrom.ends + c(0, chrom.ends[-length(chrom.ends)])) / 2
axis(side=1,at=ax,labels=uni.chrom,cex=.2,lwd=.5,las=1,cex.axis=1,cex.lab=1)
axis(side=2, at=c(-1, -0.5, 0, 0.5, 1), labels=c('100 %', ' 50 %', '0 %', '50 %', '100 %'), las=1)
mtext('gains', side=2, line=3, at=0.5)
mtext('losses', side=2, line=3, at=-0.5)
### number of data points
str <- paste(round(nrow(x) / 1000), 'k x ', sep='')
probe <- median(bpend(x)-bpstart(x)+1)
if (probe < 1000) {
str <- paste(str, probe, ' bp', sep='')
} else {
str <- paste(str, round(probe / 1000), ' kbp', sep='')
}
mtext(str, side=3, line=0, adj=0)
}
setMethod("chromosomes", "cghCall", function(object) pData(featureData(object))[,"Chromosome"])
setMethod("bpstart", "cghCall", function(object) pData(featureData(object))[,"Start"])
setMethod("bpend", "cghCall", function(object) pData(featureData(object))[,"End"])
setMethod("copynumber", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "copynumber"))
setReplaceMethod("copynumber", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "copynumber", value))
setMethod("segmented", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "segmented"))
setReplaceMethod("segmented", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "segmented", value))
setMethod("calls", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "calls"))
setReplaceMethod("calls", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "calls", value))
setMethod("probdloss", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "probdloss"))
setReplaceMethod("probdloss", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "probdloss", value))
setMethod("probloss", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "probloss"))
setReplaceMethod("probloss", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "probloss", value))
setMethod("probnorm", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "probnorm"))
setReplaceMethod("probnorm", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "probnorm", value))
setMethod("probgain", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "probgain"))
setReplaceMethod("probgain", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "probgain", value))
setMethod("probamp", signature(object="cghCall"),
function(object) Biobase:::assayDataElement(object, "probamp"))
setReplaceMethod("probamp", signature(object="cghCall", value="matrix"),
function(object, value) assayDataElementReplace(object, "probamp", value))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.