#' @title Estimate And Plot Median Standard Deviation
#'
#' @description For each cell line in each pipeline,
#' the standard deviation of detrend logsignals are calculated
#' for individual features. Then, loess smooth on standard
#' deviation are plotted stratified by detrended log signals
#' for select cell line. The median of standard deviation at
#' three different levels of detrend logsignals are reported.
#'
#' @param dat A \code{rnaseqcomp} S4 class object.
#' @param constant A numeric pseudo-constant to be added on all
#' the signals before transferred to log scale. (default: 0.5)
#' @param loessspan A numeric number indicating span used
#' for loess smooth. Details see
#' \code{loess.smooth} function. (Default: 1/3)
#' @param thresholds A vector of two numbers define cutoffs for
#' three levels of detreded log signals. (default: c(1, 6))
#' @param plotcell 1 or 2 indicating which cell line
#' will be plotted. If values other than 1 and 2, both cell
#' lines will be plotted. This value won't affect estimation for both
#' cell lines. (default: 1)
#' @param ... Parameters for base function \code{plot}.
#'
#' @import RColorBrewer
#' @import methods
#'
#' @return
#' \item{plot}{SD plots of quantification pipelines for
#' selected cell line by \code{plotcell}.}
#' \item{list}{A list of two matrices of median and standard error of
#' standard deviations.}
#'
#' @export
#' @examples
#' data(simdata)
#' condInfo <- factor(simdata$samp$condition)
#' repInfo <- factor(simdata$samp$replicate)
#' evaluationFeature <- rep(TRUE, nrow(simdata$meta))
#' calibrationFeature <- simdata$meta$house & simdata$meta$chr == 'chr1'
#' unitReference <- 1
#' dat <- signalCalibrate(simdata$quant, condInfo, repInfo, evaluationFeature,
#' calibrationFeature, unitReference, calibrationFeature2 = calibrationFeature)
#' plotSD(dat)
plotSD <- function(dat, constant = 0.5, loessspan = 1/3,
thresholds = c(1, 6), plotcell = 1,
...){
if(!is(dat, 'rnaseqcomp'))
stop('"plotSD" only plots class "rnaseqcomp".')
para <- list(...)
if(length(para)!=0 && any(!(names(para) %in%
c("xlim","ylim","xlab","ylab","lty","lwd","main","col"))))
stop('... contains non-used arguments.')
dat@quantData <- lapply(dat@quantData, function(x) x + constant)
sdlist <- list()
for(i in 1:2){
tmpsig <- lapply(dat@quantData, function(x)
x[,dat@condInfo == levels(dat@condInfo)[i], drop=F])
sdlist[[i]] <- lapply(seq_along(dat@quantData), function(j){
tmp <- tmpsig[[j]]
idx <- which(apply(tmp, 1, max) > constant)
tmp <- log2(tmp[idx,])
cbind(rowMeans(tmp), apply(tmp, 1, sd))
})
}
if(!('xlab' %in% names(para))) xlab <- 'Detrended logSignal'
else xlab <- para$xlab
if(!('ylab' %in% names(para))) ylab <- 'SD'
else ylab <- para$ylab
if(!('xlim' %in% names(para))) xlim <- c(-1, 12)
else xlim <- para$xlim
if(!('ylim' %in% names(para))) ylim <- c(0, 1.5)
else ylim <- para$ylim
if(!('lty' %in% names(para))) lty <- 1
else lty <- para$lty
if(!('lwd' %in% names(para))) lwd <- 2
else lwd <- para$lwd
if(!('main' %in% names(para))) main <- "SD plot"
else main <- para$main
if(!('col' %in% names(para))) {
if(length(dat@quantData)<3)
col <- c("blue","orange")[seq_along(dat@quantData)]
else {
col <- brewer.pal(min(length(dat@quantData), 8), "Set2")
}
}else col <- para$col
lty <- rep_len(lty, length(dat@quantData))
col <- rep_len(col, length(dat@quantData))
for(i in seq_along(dat@quantData)){
if(plotcell==1){
fitx <- sdlist[[1]][[i]][ ,1]
fity <- sdlist[[1]][[i]][ ,2]
}else if(plotcell==2){
fitx <- sdlist[[2]][[i]][ ,1]
fity <- sdlist[[2]][[i]][ ,2]
}else{
fitx <- sdlist[[1]][[i]][ ,1]
fity <- sdlist[[1]][[i]][ ,2]
fitx2 <- sdlist[[2]][[i]][ ,1]
fity2 <- sdlist[[2]][[i]][ ,2]
}
x <- loess.smooth(fitx, fity,span = loessspan, degree = 1,
family = "symmetric", evaluation = 1000)
if(i == 1) {
plot(x$x, x$y, type = 'l', lwd = lwd, col = col[i],
lty = lty[i], xlim = xlim, ylim = ylim,
xlab = xlab, ylab = ylab, main = main)
}else {
lines(x$x, x$y, lwd = lwd, col = col[i], lty = lty[i])
}
if(!(plotcell %in% 1:2)){
y <- loess.smooth(fitx2, fity2, span = loessspan, degree = 1,
family = "symmetric", evaluation = 1000)
lines(y$x, y$y, lwd = lwd, col = col[i], lty = lty[i] + 2)
}
}
box()
if(plotcell %in% 1:2){
legend('topright', names(dat@quantData), lwd = lwd, col = col,
lty = lty, bty = "n", cex = 1)
}else{
cells <- levels(dat@condInfo)
legend('topright', c(names(dat@quantData), cells),
lwd = lwd, col = c(col, rep("black", length(cells))),
lty = c(lty, lty[1], lty[1] + 2), bty = "n", cex = 1)
}
SDs <- lapply(sdlist, function(y)
sapply(y, function(x){
idx1 <- x[,1] <= thresholds[1] &
x[,1] > log2(constant+0.1)
idx2 <- x[,1] < thresholds[2] &
x[,1] > thresholds[1]
idx3 <- x[,1] >= thresholds[2]
c(median(x[idx1, 2]), median(x[idx2, 2]),
median(x[idx3, 2]),
mad(x[idx1, 2]) / sqrt(length(idx1)),
mad(x[idx2, 2]) / sqrt(length(idx2)),
mad(x[idx3, 2]) / sqrt(length(idx3)))
}))
SD <- sqrt((SDs[[1]]^2 + SDs[[2]]^2)/2)
colnames(SD) <- names(dat@quantData)
rownames(SD) <- rep(c(paste0("A<=", thresholds[1]),
paste0(thresholds[1], "<A<", thresholds[2]),
paste0("A>=", thresholds[2])),2)
return(list(med=round(SD[1:3,], 2),se=round(SD[4:6,], 3)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.