Description Usage Arguments Details Value Examples
Combines output from calculateTFstoTargets for multiple batches/normalizations.
1 | combineDependencies(list_of_correlation_tables)
|
list_of_correlation_tables |
list of output from calculateTFstoTargets |
Counts the number of times TF-Target inferred across multiple batches or normalizations. And infers the consensus direction of the relationship as follows: if always "other" (0) then "other" (0) if always "other" (0) or "positive" (1) then positive (1) if always "other" (0) or "negative" (1) then negative (1) if mix of "positive" and "negative" then "other" (0)
A table with columns "Gene" (TF), "Target", "recurr" (number of batches), and "direction"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | set.seed(13)
batchA_output <- data.frame(
Gene=sample(c("A", "B", "C", "D"), 50, replace=TRUE),
Target=sample(c("E", "F", "G", "E", "F"), 50, replace=TRUE)
)
batchA_output <- unique(batchA_output)
batchA_output$estimate <- rep(1, times=nrow(batchA_output))
batchA_output$pval <- rep(1, times=nrow(batchA_output))
batchA_output$direction <- sample(c(1,0,-1), nrow(batchA_output), replace=TRUE)
batchB_output <- data.frame(
Gene=sample(c("A", "B", "C", "D"), 50, replace=TRUE),
Target=sample(c("E", "F", "G", "E", "F"), 50, replace=TRUE)
)
batchB_output <- unique(batchB_output)
batchB_output$estimate <- rep(1, times=nrow(batchB_output))
batchB_output$pval <- rep(1, times=nrow(batchB_output))
batchB_output$direction <- sample(c(1,0,-1), nrow(batchB_output), replace=TRUE)
consensus <- combineDependencies(list(batchA_output, batchB_output));
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.